The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory.

Architects who keep up with the new designs demanded by the building industry will remain at the forefront of the design process in our information-technology based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process. We can get “back to command”.

The other message of our slogan is “Back to command”. In the expanding world of IT applications there is a need for the ready change of preliminary models by using parameters and scripts. These approaches retrieve the feeling of command-oriented systems.

Why CAADence in architecture?

“The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuosic improvisation.”
CAADence
in architecture
Back to command
Edited by Mihály Szoboszlai
Editor

Mihály Szoboszlai
Faculty of Architecture
Budapest University of Technology and Economics

2nd edition, July 2016

Cover page: Faraway Design Kft.

Layout, typography: based on proceedings series of eCAADe conferences

DTP: Tamás Rumi

ISBN: 978-963-313-225-8
ISBN: 978-963-313-237-1 (online version)

Copyright © 2016

Publisher: Faculty of Architecture, Budapest University of Technology and Economics

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher.
CAADence in Architecture
Back to command

Proceedings of the International Conference on Computer Aided Architectural Design

16-17 June 2016
Budapest, Hungary
Faculty of Architecture
Budapest University of Technology and Economics

Edited by
Mihály Szoboszlai
Theme

CAADence in Architecture
Back to command

The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory. Architects who keep up with the new design demanded by the building industry will remain at the forefront of the design process in our IT-based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process. We can get “back to command”.

Our slogan “Back to Command” contains another message. In the expanding world of IT applications, one must be able to change preliminary models readily by using different parameters and scripts. These approaches bring back the feeling of command-oriented systems, although with much greater effectiveness.

Why CAADence in architecture?
“The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By definition, a cadence is a solo that precedes a closing formula, in which the soloist plays a series of personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuosoic improvisation.”

Nowadays sophisticated CAAD (Computer Aided Architectural Design) applications might operate in the hand of architects like instruments in the hand of musicians. We have used the word association cadence/caadence as a sort of word play to make this event even more memorable.

Mihály Szoboszlai
Chair of the Organizing Committee
Sponsors

GRAPHISOFT
ARCHICAD

AUTODESK

STUDIO IN-EX
ARCHITECTS & ENGINEERS

MÜEGYETEM 1782

Építészeti Ábrázolás Tanszék
Department of Architectural Representation
Acknowledgement

We would like to express our sincere thanks to all of the authors, reviewers, session chairs, and plenary speakers. We also wish say thank you to the workshop organizers, who brought practice to theory closer together. This conference was supported by our sponsors: GRAPHISOFT, AUTODESK, and STUDIO IN-EX. Additionally, the Faculty of Architecture at Budapest University of Technology and Economics provided support through its “Future Fund” (Jövő Alap), helping to bring internationally recognized speakers to this conference. Members of our local organizing team have supported this event with their special contribution – namely, their hard work in preparing and managing this conference.

Mihály Szoboszlai
Chair of the Organizing Committee

Local conference staff
Ádám Tamás Kovács, Bodó Bánáti, Imre Batta, Bálint Csabay, Benedek Gászpor, Alexandra Göőz, Péter Kaknics, András Zsolt Kovács, Erzsébet Kőnigné Tóth, Bence Krajnyák, Levente Lajtos, Pál Ledneczki, Mark Searle, Béla Marsal, Albert Máté, Boldizsár Medvey, Johanna Pék, Gábor Rátonyi, László Strommer, Zsanett Takács, Péter Zsigmond
Workshop tutors

Algorithmic Design through BIM
 Erik Havadi
 Laura Baróthy

Working with BIM Analyses
 Balázs Molnár
 Máté Csócsics
 Zsolt Oláh

OPEN BIM
 Ákos Rechtorisz
 Tamás Erős

GDL in Daily Work
 Gergely Fehér
 Dominika Bobály
 Gergely Hári
 James Badcock
List of Reviewers

Abdelmohsen, Sherif - Egypt
Achten, Henri - Czech Republic
Agkathidís, Asterios - United Kingdom
Asanowicz, Aleksander - Poland
Bhatt, Anand - India
Braumann, Johannes - Austria
Celani, Gabriela - Brazil
Cerovsek, Tomo - Slovenia
Chaszar, Andre - Netherlands
Chronis, Angelos - Spain
Dokonal, Wolfgang - Austria
Estévez, Alberto T. - Spain
Fricker, Pia - Switzerland
Herr, Christiane M. - China
Hoffmann, Miklós - Hungary
Juhász, Imre - Hungary
Jutraz, Anja - Slovenia
Kieferle, Joachim B. - Germany
Klinc, Robert - Slovenia
Koch, Volker - Germany
Kolarevic, Branko - Canada
König, Reinhard - Switzerland
Krakhofer, Stefan - Hong Kong
van Leeuwen, Jos - Netherlands
Lomker, Thorsten - United Arab Emirates
Lorenz, Wolfgang - Austria
Loveridge, Russell - Switzerland
Mark, Earl - United States
Molnár, Emil - Hungary
Mueller, Volker - United States
Nourian, Pirouz - Netherlands
Oxman, Rivka - Israel
Parlac, Vera - Canada
Quintus, Alex - United Arab Emirates
Searle, Mark - Hungary
Szoboszlai, Mihály - Hungary
Tuncer, Bige - Singapore
Verbeke, Johan - Belgium
Vermillion, Joshua - United States
Watanabe, Shun - Japan
Wojtowicz, Jerzy - Poland
Wurzer, Gabriel - Austria
Yamu, Claudia - Netherlands
Contents

14 Keynote speakers

15 Keynote

15 Backcasting and a New Way of Command in Computational Design
Reinhard Koenig, Gerhard Schmitt

27 Half Cadence: Towards Integrative Design
Branko Kolarevic

33 Call from the industry leaders

33 Kajima’s BIM Theory & Methods
Kazumi Yajima

41 Section A1 - Shape grammar

41 Minka, Machiya, and Gassho-Zukuri
Procedural Generation of Japanese Traditional Houses
Shun Watanabe

49 3D Shape Grammar of Polyhedral Spires
László Strommer

55 Section A2 - Smart cities

55 Enhancing Housing Flexibility Through Collaboration
Sabine Ritter De Paris, Carlos Nuno Lacerda Lopes

61 Connecting Online-Configurators (Including 3D Representations) with CAD-Systems
Small Scale Solutions for SMEs in the Design-Product and Building Sector
Matthias Kulcke

67 BIM to GIS and GIS to BIM
Szabolcs Kari, László Lellei, Attila Gyulai, András Sik, Miklós Márton Riedel
Section A3 - Modeling with scripting

Parametric Details of Membrane Constructions
Bálint Péter Füzes, Dezső Hegyi

De-Script-ion: Individuality / Uniformity
Helen Lam Wai-yin, Vito Bertin

Section B1 - BIM

Forecasting Time between Problems of Building Components by Using BIM
Michio Matsubayashi, Shun Watanabe

Integration of Facility Management System and Building Information Modeling
Lei Xu

BIM as a Transformer of Processes
Ingolf Sundfør, Harald Selvær

Section B2 - Smooth transition

Changing Tangent and Curvature Data of B-splines via Knot Manipulation
Szilvia B.-S. Béla, Márta Szilvási-Nagy

A General Theory for Finding the Lightest Manmade Structures Using Voronoi and Delaunay
Mohammed Mustafa Ezzat

Section B3 - Media supported teaching

Developing New Computational Methodologies for Data Integrated Design for Landscape Architecture
Pia Fricker

The Importance of Connectivism in Architectural Design Learning: Developing Creative Thinking
Verónica Paola Rossado Espinoza

Ambient PET(b)ar
Kateřina Nováková

Geometric Modelling and Reconstruction of Surfaces
Lidija Pletenac
149 Section C1 - Collaborative design + Simulation

149 Horizontal Load Resistance of Ruined Walls Case Study of a Hungarian Castle with the Aid of Laser Scanning Technology
Tamás Ther, István Sajtos

155 2D-Hygrothermal Simulation of Historical Solid Walls
Michela Pascucci, Elena Lucchi

163 Responsive Interaction in Dynamic Envelopes with Mesh Tessellation
Sambit Datta, Smolik Andrei, Tengwen Chang

169 Identification of Required Processes and Data for Facilitating the Assessment of Resources Management Efficiency During Buildings Life Cycle
Moamen M. Seddik, Rabee M. Reffat, Shawkat L. Elkady

177 Section C2 - Generative Design - 1

177 Stereotomic Models In Architecture A Generative Design Method to Integrate Spatial and Structural Parameters Through the Application of Subtractive Operations
Juan José Castellón González, Pierluigi D’Acunto

185 Visual Structuring for Generative Design Search Spaces
Günsu Merin Abbas, İpek Gürsel Dino

195 Section D2 - Generative Design - 2

195 Solar Envelope Optimization Method for Complex Urban Environments
Francesco De Luca

203 Time-based Matter: Suggesting New Formal Variables for Space Design
Delia Dumitrescu

213 Performance-oriented Design Assisted by a Parametric Toolkit - Case study
Bálint Botzheim, Kitti Gidófalvy, Patricia Emy Kikunaga, András Szollár, András Reith

221 Classification of Parametric Design Techniques
Types of Surface Patterns
Réka Sárközi, Péter Iványi, Attila Béla Széll
227 Section D1 - Visualization and communication

227 Issues of Control and Command in Digital Design and Architectural Computation
André Chaszar

235 Integrating Point Clouds to Support Architectural Visualization and Communication
Dóra Surina, Gábor Bődő, Konsztantinosz Hadzijanisz, Réka Lovas, Beatrix Szabó, Barnabás Vári, András Fehér

243 Towards the Measurement of Perceived Architectural Qualities
Benjamin Heinrich, Gabriel Wurzer

249 Complexity across scales in the work of Le Corbusier
Using box-counting as a method for analysing facades
Wolfgang E. Lorenz

256 Author’s index
Keynote speakers

REINHARD KÖNIG

Reinhard König studied architecture and urban planning. He completed his PhD thesis in 2009 at the University of Karlsruhe. Dr. König has worked as a research assistant and appointed Interim Professor of the Chair for Computer Science in Architecture at Bauhaus-University Weimar. He heads research projects on the complexity of urban systems and societies, the understanding of cities by means of agent based models and cellular automata as well as the development of evolutionary design methods. From 2013 Reinhard König works at the Chair of Information Architecture, ETH Zurich. In 2014 Dr. König was guest professor at the Technical University Munich. His current research interests are applicability of multi-criteria optimisation techniques for design problems and the development of computational analysis methods for spatial configurations. Results from these research activities are transferred into planning software of the company DecodingSpaces. From 2015 Dr. König heads the Junior-Professorship for Computational Architecture at Bauhaus-University Weimar, and acts as Co-PI at the Future Cities Lab in Singapore, where he focus on Cognitive Design Computing. Main research project: Planning Synthesis & Computational Planning Group see also the project description: Computational Planning Synthesis and his external research web site: Computational Planning Science

BRANKO KOLAREVIC

Branko Kolarevic is a Professor of Architecture at the University of Calgary Faculty of Environmental Design, where he also holds the Chair in Integrated Design and co-directs the Laboratory for Integrative Design (LID). He has taught architecture at several universities in North America and Asia and has lectured worldwide on the use of digital technologies in design and production. He has authored, edited or co-edited several books, including “Building Dynamics: Exploring Architecture of Change” (with Vera Parlac), “Manufacturing Material Effects” (with Kevin Klinger), “Performative Architecture” (with Ali Malkawi) and “Architecture in the Digital Age.” He is a past president of the Association for Computer Aided Design in Architecture (ACADIA), past president of the Canadian Architectural Certification Board (CACB), and was recently elected future president of the Association of Collegiate Schools of Architecture (ACSA). He is a recipient of the ACADIA Award for Innovative Research in 2007 and ACADIA Society Award of Excellence in 2015. He holds doctoral and master’s degrees in design from Harvard University and a diploma engineer in architecture degree from the University of Belgrade.
BIM as a Transformer of Processes

Ingolf Sundfør¹, Harald Selvær²

¹,²BIM Technican Programme
Oslo Technical College, Norway
e-mail: {ingols2905|harald2208}@osloskolen.no

Abstract: The use and implementation of BIM technology, BIM software and BIM processes are still new to the Architect, Engineering and Construction industry. Adopting BIM in a project involves more than just a software update. The processes used in a traditional Two-dimensional-environment is not necessarily possible to adapt in a Three-dimensional BIM environment. The use of BIM has the potential to radically change the structure and dynamics of a project. In our experience, we need to apply the same radical changes on how education for architects, engineers and BIM Technicians are applied. The BIM Technicians Education started up at Oslo Technical College in 2008. [1] The students are construction workers with a vocational certificate and practical experience from the building industry. On order to facilitate the transformation of these former construction workers into skilled BIM Technicians in the AEC industry, we have adopted teaching methods often referred to as “Situated Learning” and “Reflective Practice”.

Keywords: BIM, situated learning, learning-centred design, constructivism

DOI: 10.3311/CAADence.1690

INTRODUCTION

In Norway, most large building projects implement BIM at some level. Participants use the latest BIM technology and multi-disciplined models are used for clash control, quantity take-offs, and to calculate cost estimates. The use of BIM has proven its worth as an important cost-saving tool, not least when it comes to reducing the person-hours required to finalise projects. BIM also provides new possibilities to create holistic project planning and implementation. Still, established contractual frameworks and practises are limiting the optimal use of BIM software and processes. However, these established practises are being challenged. As we will explain below this entails that the participants not only share information, but also participate in an evolving process to find solutions before project start-up.

When the BIM technician programme was established in 2008, we believed that BIM could be a game-changer in the construction industry. Our ambition has been to educate BIM technicians that are able to provide their future employees with the competence necessary to fully utilise both BIM software and processes. [1] In order to do this, it has been crucial to realise that in the same way as the construction industry cannot fully utilise BIM by replicating old processes, it is not possible to educate fully productive BIM technicians by replicating old teaching methods. By adapting a learning-centred focus we aim to give our students the necessary skills and training, to develop and manage BIM processes in the field.

A learning-centred focus means that the perspective is on student learning outcome, rather
than teaching output. The student is the pivot point in the development of the curriculum and in the physical layout of the classroom.

NEW TECHNOLOGY IN THE EDUCATION SECTOR

A limited approach to new technology is also well-known in the education sector. Journalist David Raths has described what happened when one of America’s top universities established its first computer classroom. “In the late 1980s, Stanford University’s [CA] writing program received a grant from Apple Computer to build a computer classroom and writing instruction lab. The facilities staff suggested putting the computers in rows, because that was the easiest way to hook them up, but the instructors had different ideas about how to arrange the classroom... It was one of the first computer classrooms designed by teachers instead of by the technologists and facilities folks,” recalled Richard Holeton, director of academic computing services at Stanford. But he remembers that the communication about the new space was a challenge. “The facilities staff has always thought in terms of things like square footage per person. We realized we had a situation where there was no common language, no standard for how you talk about group work.” [2]

The example from Stanford University is highly relevant when teaching BIM. As we will show below, adding computers and software to a classroom does not make the students able to fully utilise BIM on a construction site.

TRANSFORMING CONSTRUCTION PROJECTS

As mentioned above a clear majority of projects and construction companies use BIM software, but contractual frameworks and practises are limiting or delaying the process toward using the software to optimise the construction planning and implementation process itself. Even in multi-billion projects, participants use BIM software, but are obliged to deliver drawings, often a pdf file, instead of models. Sophisticated and detailed models, containing a wide array of information, are reduced to Two-dimensional drawings. As a result, in many companies, the implementation of BIM is limited to a replica of the processes developed for Two-dimensional “blue print production”. This can be compared to using your computer as a typewriter, without ever exploring the added possibilities available through word processing, hyperlinks, and file sharing.

Secondly, in established contractual frameworks, income is generated every time there arises a need for revisions that are not covered in the tender document. In other words, the framework rewards the production of revised drawings and plans throughout the project. There is therefore no incentive to make sure that the original plan is as accurate as possible and that revisions are kept at a minimum. This can be described as a culture of claim. A contractor, who on a regular basis experiences that the actual cost of construction is far higher than described in the tender document, makes the claim. In his book Construction Law: From Beginner to Practitioner Jim Mason names this practice as Claimsmanship, and give the following description of its nature:

The bid price is frequently a long way removed from the actual cost of construction. The reasons for this can lie in poor planning and late design changes... The defence to the allegation put forward by the contractors would be that the ultra-competitive tendering procedures and focus on lowest cost to the exclusion of all other factors leave them no choice but to seek to make a margin by bringing claims. [3]

In the report popularly named as “The Egan Report”, or as it’s officially named; Construction Task Force to the Deputy Prime Minister, John Prescott, on the scope for improving the quality and efficiency of UK construction, Sir John Egan concluded on the matter of competitive tendering:

The industry must replace competitive tendering with long term relationships based on clear measurement of performance and sustained improvements in quality and efficiency. [4]

The report was published in 1998, long before the existence of today’s high-level functional BIM software. None the less, the report pinpoints how the tendering process can be a limiting factor for the delivered quality and the collaborative processes in a project.
BREAKING THE DEADLOCK

By demanding open BIM formats, Norwegian public clients have been the main driver behind the transformation from Two-dimensional drawings to model-based information delivery. The Norwegian public contractor Statsbygg sets the use of models containing properties and relationships as a mandatory demand in their BIM manual; “A digital 3D building information model (subsequently denoted as “the BIM” or similar) based on object-based design (using objects with properties and relationships) and using open BIM standards/formats is a main deliverable.” [5]

This is an example of how governments can play an active and important role in making BIM the main deliverable platform of information in the project. This active role is described by Jim Mason who concludes on this matter in his book Construction law, from Beginner to Practitioner: The government is a major client of the construction industry and can clearly dictate policy in relation to public projects. [3]

TAKING BIM A STEP FURTHER

In the planning of the new regional public hospital for the county of Vestfold, this approach has been taken a step further. In this project, the governmental client also demands that all sub-contractors are jointly responsible for accurate planning and implementation. [6] Helse Sør-Øst (the Health Authority for Norway’s southern and eastern regions) has added additional demands when contracting for one of their new regional hospitals currently under planning. The hospital located in the city of Tønsberg, will comprise 40,000 square metres, and has an estimated budget of NOK 2.5 billion (approximately 250 million Euro). Hospitals are considered the most complex type of building project, but this has not deterred the client from setting ambitious goals.

The official objectives are to:
- Reduce costs with 10 per cent, compared with similar projects
- Reduce time from start up to completion with 50 per cent, compared with similar projects
- Keep the amount of construction related error at 0 per cent [7]

KEY SUCCESS FACTORS

In order to fulfil these objectives several key factors have been identified. One of the most important is to place collaborative BIM processes at the navel of every project decision. The project teams are therefore obliged to work at the on-site project village throughout the planning and building process.

Another key factor is that the client has decided that the quality of the BIM models must be at level with LOD 500 before start-up. LOD 500 has a level of detail normally found in “As Build” models. In other words, the sub-contractors must work together, foreseeing and solving possible issues prior to the construction phase. In addition, the different technical disciplines have to pass a practical modelling test before being accepted as qualified to take part in the project. The use of Four- Dimensional tools like Synchro is mandatory, and gives the client a possibility to follow up progress and alterations at a new level, and finally IFC files cannot take longer than 15 minutes to export from their proprietorial program.

Setting these standards, means taking into account the BIM processes, the use of BIM software and also the challenges working with BIM.

BIM DIDACTICS: ACTIVITY RATHER THAN BROADCASTING

As shown above, optimal use of BIM processes involves a high degree of information sharing and willingness of committing to collaborative process. A BIM technician should therefore be able to, not only use the software, but also take active part in and develop BIM processes.

We therefore need to empower our students so that they have confidence in their own abilities to think holistically, contribute to problems solving, and carry out quality assurances. In our opinion, it is not possible to teach students these skills through lectures where the teacher broadcasts the curriculum, and the students are passive recipients.

We have therefore based our curriculum on Constructivist Learning Theories, which focuses on empowering students through constructing their own learning. In his article Rethinking Science Ed-
ucation: Beyond Piagetian Constructivism Toward a Sociocultural Model of Teaching and Learning, Professor Michael O’Loughlin quotes the Brazilian Constructive educator Paulo Freire on how learning emerges:

“…Freire argues that curriculum must emerge from the generative themes of people’s lives and that if education is to be empowering it must culminate in praxis.” [8]

Freire points to two elements, firstly, that the curriculum should emerge from generative themes in people’s lives, secondly that in order to be empowering education must culminate in praxis. We try to adopt this sequel of learning in our curriculum.

PREVIOUS EXPERIENCE

Firstly, we have based the curriculum on the students’ previous knowledge and experience. Our students are former construction workers, including carpenters, steel workers, brick layers, plumbers, and electricians. This means that the student has a practical understanding of at least one building discipline and is familiar with on-site construction. We encourage our students to use this experience as a starting point when creating their own models. For example, a plumber is well versed in the difficulties related to finding solution related to routing pipes above a suspended ceiling. Consequently, using his or hers former experience when using a Mechanical Electrical Plumbing (MEP)-tool in modelling proves to be fruitful. The ability to adopt previous experiences on to a new phase in a construction site, can be described as reflection in action. Donald Schön describes this process in his book The Reflective Practitioner, How Practitioners Think In Action. [9]

SITUATED LEARNING AND EMPOWERMENT

Secondly, we have found that empowerment is best achieved by drawing on the methods of Situated Learning, an element within Constructivist learning.

Situated Learning was first projected by Jean Lave and Etienne Wenger as a model of learning in a community of practice. This type of learning allows an individual (students/learner) to learn by socialization, visualization, and imitation.

“The pedagogy of computer tutors echoes the apprenticeship model in setting individualized tasks for learners and offering guidance and feedback as they work.” [10]

In order to support a Situated Learning model, our classrooms were set up to facilitate workshops, instead of desks in a row, the rooms were designed as open office environments. We thereby transformed the classroom from a standard “knowledge reproducing environment” to a “knowledge sharing environment.” The layout of the BIM-Classroom itself encourages teachers and students to share experiences. Large oval tables give the students an opportunity to walk around and interact with one another. It also diminishes the teacher’s authority (which is good) and places the BIM teacher more on level with the students (which is even better). After all, we teach skilled construction workers, who often have more up-to-date experience from construction projects than we do.

Working in this environment, the students create multi-disciplined BIM models throughout the course. They find solutions and adopt changes in projects based on real-life scenarios, interacting with teachers and other students, or even consulting former students (see more below) as they to their tasks.

Picture 1:
The picture shows how the students (sitting) and the teachers (standing) collaborating on a commons task. An example of learning-centred area design integrated with BIM.
IN REAL LIFE

In the same way as collaboration is a key factor in the Tønsberg hospital project, we have found that the use of Internet, file sharing and other collaborative platforms does not make the need for social interaction obsolete. In fact, more information, and more complex models increases the need for communication IRL (In Real Life).

The Tønsberg project demands that the different stakeholders are physically co-located from the design phase to the initial test phase when the hospital is operational. Why is this so important for the project? Files can be shared digitally, but the need to follow up on issues and establishing common ground is best solved through physical co-location.

A good example of how to promote collaborative processes can be found in the floor plan of the Tønsberg Site Village.

Note the blue area marked BigRoom. This area will host a multi-disciplined team. The area can be changed to an open meeting area where the BIM models will be the source and origin for the day to day planning. (ref Integrated Concurrent Engineering)

Finding solutions and resolving issues are at the centre of any BIM process. This is the reason why, in our curriculum, mastering BIM processes is equally important to mastering BIM software.

PRAXIS

Finally, we encourage contact and facilitate meeting points between students and members of the Architect, Engineer and Construction (AEC) industry.

- Former students are organised through an alumni network providing feedback to both present students and interaction between former students. This takes place through events and through an online forum.
- As part of the course, each student spend between two and four weeks as interns in an AEC industry company.

The AEC industry is also invited to evaluate our curriculum at regular intervals. This is to ensure that the curriculum stays relevant and up to the standards expected on site.
CONCLUSION

BIM has already altered the way building projects are carried out. BIM is in the process of radically changing established project structures. In the Tønsberg project, a much larger part of the overall project has been moved forward to the pre-building phase and sub-contractors are expected to collaborate earlier and closer throughout the project. This means that increasingly the BIM technicians need to be skilled in collaborative processes and digital, holistic quality assurance.

In the Tønsberg project, BIM is not a “add on” but at the heart of the project design.

The same applies to the learning of BIM processes. Students need to implement, and actively taking part of the process itself, in order to be able to fully master the curriculum.

Learning-centred area design and learning-centred curriculum does not limit its use to topics involving BIM, but our experience is that Information Technology and BIM profits from the use of these methods. Both the student’s previous experiences and training best described as Situated Learning, are key elements in the transformation that leads the former construction worker to play a vital role in a collaborative BIM project.

REFERENCES

Author’s index

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbas, Günsu Merin</td>
<td>185</td>
</tr>
<tr>
<td>Balla-S. Béla, Szilvia</td>
<td>105</td>
</tr>
<tr>
<td>Bertin, Vito</td>
<td>79</td>
</tr>
<tr>
<td>Botzheim, Bálint</td>
<td>213</td>
</tr>
<tr>
<td>Bödő, Gábor</td>
<td>235</td>
</tr>
<tr>
<td>Castellon Gonzalez, Juan José</td>
<td>177</td>
</tr>
<tr>
<td>Chang, Tengwen</td>
<td>163</td>
</tr>
<tr>
<td>Chaszar, Andre</td>
<td>227</td>
</tr>
<tr>
<td>D’Acunto, Pierluigi</td>
<td>177</td>
</tr>
<tr>
<td>Datta, Sambit</td>
<td>163</td>
</tr>
<tr>
<td>De Luca, Francesco</td>
<td>195</td>
</tr>
<tr>
<td>De Paris, Sabine</td>
<td>55</td>
</tr>
<tr>
<td>Dino, İpek Gürsel</td>
<td>185</td>
</tr>
<tr>
<td>Dumitrescu, Delia</td>
<td>203</td>
</tr>
<tr>
<td>Elkady, Shawkat L.</td>
<td>169</td>
</tr>
<tr>
<td>Ezzat, Mohammed</td>
<td>111</td>
</tr>
<tr>
<td>Fehér, András</td>
<td>235</td>
</tr>
<tr>
<td>Fricker, Pia</td>
<td>119</td>
</tr>
<tr>
<td>Füzés, Bálint Péter</td>
<td>73</td>
</tr>
<tr>
<td>Gidófalvy, Kittí</td>
<td>213</td>
</tr>
<tr>
<td>Gyulai, Attila</td>
<td>67</td>
</tr>
<tr>
<td>Hadzijanianz, Konsztantinosz</td>
<td>235</td>
</tr>
<tr>
<td>Hegyi, Dezső</td>
<td>73</td>
</tr>
<tr>
<td>Heinrich, Benjamin</td>
<td>243</td>
</tr>
<tr>
<td>Iványi, Péter</td>
<td>221</td>
</tr>
<tr>
<td>Kari, Szabolcs</td>
<td>67</td>
</tr>
<tr>
<td>Kikunaga, Patricia Emy</td>
<td>213</td>
</tr>
<tr>
<td>Koenig, Reinhard</td>
<td>15</td>
</tr>
<tr>
<td>Kolarevic, Branko</td>
<td>27</td>
</tr>
<tr>
<td>Kulcke, Matthias</td>
<td>61</td>
</tr>
<tr>
<td>Lam, Wai Yin</td>
<td>79</td>
</tr>
<tr>
<td>Lellei, László</td>
<td>67</td>
</tr>
<tr>
<td>Lorenz, Wolfgang E.</td>
<td>249</td>
</tr>
<tr>
<td>Lovás, Réka</td>
<td>235</td>
</tr>
<tr>
<td>Lucchi, Elena</td>
<td>155</td>
</tr>
<tr>
<td>Matsubayashi, Michio</td>
<td>87</td>
</tr>
<tr>
<td>Nováková, Kateřina</td>
<td>133</td>
</tr>
<tr>
<td>Nuno Lacerda Lopes, Carlos</td>
<td>55</td>
</tr>
<tr>
<td>Pascucci, Michela</td>
<td>155</td>
</tr>
<tr>
<td>Pletenac, Lidija</td>
<td>141</td>
</tr>
<tr>
<td>Reffat M., Rabee</td>
<td>169</td>
</tr>
<tr>
<td>Reith, András</td>
<td>213</td>
</tr>
<tr>
<td>Riedel, Miklós Márton</td>
<td>67</td>
</tr>
<tr>
<td>Rossado Espinoza, Verónica Paola</td>
<td>127</td>
</tr>
<tr>
<td>Sajtos, István</td>
<td>149</td>
</tr>
<tr>
<td>Sárközi, Réka</td>
<td>221</td>
</tr>
<tr>
<td>Schmitt, Gerhard</td>
<td>15</td>
</tr>
<tr>
<td>Seddik, Moamen M.</td>
<td>169</td>
</tr>
<tr>
<td>Selvær, Harald</td>
<td>99</td>
</tr>
<tr>
<td>Sik, András</td>
<td>67</td>
</tr>
<tr>
<td>Smolik, Andrei</td>
<td>163</td>
</tr>
<tr>
<td>Strommer, László</td>
<td>49</td>
</tr>
<tr>
<td>Sundfør, Ingolf</td>
<td>99</td>
</tr>
<tr>
<td>Surina, Dóra</td>
<td>235</td>
</tr>
<tr>
<td>Szabó, Beatrix</td>
<td>235</td>
</tr>
<tr>
<td>Széll, Attila Béla</td>
<td>221</td>
</tr>
<tr>
<td>Szilvási-Nagy, Márta</td>
<td>105</td>
</tr>
<tr>
<td>Szollár, András</td>
<td>213</td>
</tr>
<tr>
<td>Ther, Tamás</td>
<td>149</td>
</tr>
<tr>
<td>Vári, Barnabás</td>
<td>235</td>
</tr>
<tr>
<td>Watanabe, Shun</td>
<td>41, 87</td>
</tr>
<tr>
<td>Wurzer, Gabriel</td>
<td>243</td>
</tr>
<tr>
<td>Xu, Lei</td>
<td>93</td>
</tr>
<tr>
<td>Yajima, Kazumi</td>
<td>33</td>
</tr>
</tbody>
</table>
The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory.

Architects who keep up with the new designs demanded by the building industry will remain at the forefront of the design process in our information-technology based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process. We can get “back to command”.

The other message of our slogan is <Back to command>. In the expanding world of IT applications there is a need for the ready change of preliminary models by using parameters and scripts. These approaches retrieve the feeling of command-oriented systems, although, with much greater effectiveness.

Why CAADence in architecture?

"The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By definition, a cadence is a solo that precedes a closing formula, in which the soloist plays a series of personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuosic improvisation."