The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory.

Architects who keep up with the new designs demanded by the building industry will remain at the forefront of the design process in our information-technology based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process. We can get "back to command".

The other message of our slogan is "Back to command". In the expanding world of IT applications there is a need for the ready change of preliminary models by using parameters and scripts. These approaches retrieve the feeling of command-oriented systems.
CAADence in architecture
Back to command
Edited by Mihály Szoboszlai
Editor
Mihály Szoboszlai
Faculty of Architecture
Budapest University of Technology and Economics

2nd edition, July 2016

CAADence in Architecture – Proceedings of the International Conference on Computer Aided Architectural Design, Budapest, Hungary, 16th-17th June 2016. Edited by Mihály Szoboszlai, Department of Architectural Representation, Faculty of Architecture, Budapest University of Technology and Economics

Cover page: Faraway Design Kft.
Layout, typography: based on proceedings series of eCAADe conferences
DTP: Tamás Rumi
ISBN: 978-963-313-225-8
ISBN: 978-963-313-237-1 (online version)

CAADence in Architecture. Back to command
Budapesti Műszaki és Gazdaságtudományi Egyetem

Copyright © 2016

Publisher: Faculty of Architecture, Budapest University of Technology and Economics

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher.
CAADence in Architecture
Back to command

Proceedings of the International Conference on Computer Aided Architectural Design

16-17 June 2016
Budapest, Hungary
Faculty of Architecture
Budapest University of Technology and Economics

Edited by
Mihály Szoboszlai
Theme

CAADence in Architecture
Back to command

The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory. Architects who keep up with the new design demanded by the building industry will remain at the forefront of the design process in our IT-based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process. We can get “back to command”.

Our slogan “Back to Command” contains another message. In the expanding world of IT applications, one must be able to change preliminary models readily by using different parameters and scripts. These approaches bring back the feeling of command-oriented systems, although with much greater effectiveness.

Why CAADence in architecture?

“The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By definition, a cadence is a solo that precedes a closing formula, in which the soloist plays a series of personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuosic improvisation.”

Nowadays sophisticated CAAD (Computer Aided Architectural Design) applications might operate in the hand of architects like instruments in the hand of musicians. We have used the word association cadence/caadence as a sort of word play to make this event even more memorable.

Mihály Szoboszlai
Chair of the Organizing Committee
Acknowledgement

We would like to express our sincere thanks to all of the authors, reviewers, session chairs, and plenary speakers. We also wish to say thank you to the workshop organizers, who brought practice to theory closer together.

This conference was supported by our sponsors: GRAPHISOFT, AUTODESK, and STUDIO IN-EX. Additionally, the Faculty of Architecture at Budapest University of Technology and Economics provided support through its “Future Fund” (Jövő Alap), helping to bring internationally recognized speakers to this conference.

Members of our local organizing team have supported this event with their special contribution – namely, their hard work in preparing and managing this conference.

Mihály Szoboszlai
Chair of the Organizing Committee

Local conference staff
Ádám Tamás Kovács, Bodó Bánáti, Imre Batta, Bálint Csabay, Benedek Gászpór, Alexandra Göőz, Péter Kaknics, András Zsolt Kovács, Erzsébet Kőnigné Tóth, Bence Krajnyák, Levente Lajtos, Pál Ledneczki, Mark Searle, Béla Marsal, Albert Máté, Boldizsár Medvey, Johanna Pék, Gábor Rátonyi, László Strommer, Zsanett Takács, Péter Zsigmond
Workshop tutors

Algorithmic Design through BIM
 Erik Havadi
 Laura Baróthy

Working with BIM Analyses
 Balázs Molnár
 Máté Csócsics
 Zsolt Oláh

OPEN BIM
 Ákos Rechtorisz
 Tamás Erős

GDL in Daily Work
 Gergely Fehér
 Dominika Bobály
 Gergely Hári
 James Badcock
List of Reviewers

Abdelmohsen, Sherif - Egypt
Achten, Henri - Czech Republic
Agkathidis, Asterios - United Kingdom
Asanowicz, Aleksander - Poland
Bhatt, Anand - India
Braumann, Johannes - Austria
Celani, Gabriela - Brazil
Cerovsek, Tomo - Slovenia
Chaszar, Andre - Netherlands
Chronis, Angelos - Spain
Dokonal, Wolfgang - Austria
Estévez, Alberto T. - Spain
Fricker, Pia - Switzerland
Herr, Christiane M. - China
Hoffmann, Miklós - Hungary
Juhász, Imre - Hungary
Jutraz, Anja - Slovenia
Kieferle, Joachim B. - Germany
Klinc, Robert - Slovenia
Koch, Volker - Germany
Kolarevic, Branko - Canada
König, Reinhard - Switzerland
Krakhofer, Stefan - Hong Kong
van Leeuwen, Jos - Netherlands
Lomker, Thorsten - United Arab Emirates
Lorenz, Wolfgang - Austria
Loveridge, Russell - Switzerland
Mark, Earl - United States
Molnár, Emil - Hungary
Mueller, Volker - United States
Nourian, Pirouz - Netherlands
Oxman, Rivka - Israel
Parlac, Vera - Canada
Quintus, Alex - United Arab Emirates
Searle, Mark - Hungary
Szoboszlai, Mihály - Hungary
Tuncer, Bige - Singapore
Verbeke, Johan - Belgium
Vermillion, Joshua - United States
Watanabe, Shun - Japan
Wojtowicz, Jerzy - Poland
Wurzer, Gabriel - Austria
Yamu, Claudia - Netherlands
Contents

14 Keynote speakers

15 Keynote
15 Backcasting and a New Way of Command in Computational Design
 Reinhard Koenig, Gerhard Schmitt
27 Half Cadence: Towards Integrative Design
 Branko Kolarevic

33 Call from the industry leaders
33 Kajima’s BIM Theory & Methods
 Kazumi Yajima

41 Section A1 - Shape grammar
41 Minka, Machiya, and Gassho-Zukuri
 Procedural Generation of Japanese Traditional Houses
 Shun Watanabe
49 3D Shape Grammar of Polyhedral Spires
 László Strommer

55 Section A2 - Smart cities
55 Enhancing Housing Flexibility Through Collaboration
 Sabine Ritter De Paris, Carlos Nuno Lacerda Lopes
61 Connecting Online-Configurators (Including 3D Representations) with CAD-Systems
 Small Scale Solutions for SMEs in the Design-Product and Building Sector
 Matthias Kulcke
67 BIM to GIS and GIS to BIM
 Szabolcs Kari, László Lellei, Attila Gyulai, András Sik, Miklós Márton Riedel
73 **Section A3 - Modeling with scripting**

73 **Parametric Details of Membrane Constructions**
Bálint Péter Füzes, Dezső Hegyi

79 **De-Script-ion: Individuality / Uniformity**
Helen Lam Wai-yin, Vito Bertin

87 **Section B1 - BIM**

87 **Forecasting Time between Problems of Building Components by Using BIM**
Michio Matsubayashi, Shun Watanabe

93 **Integration of Facility Management System and Building Information Modeling**
Lei Xu

99 **BIM as a Transformer of Processes**
Ingolf Sundfør, Harald Selvær

105 **Section B2 - Smooth transition**

105 **Changing Tangent and Curvature Data of B-splines via Knot Manipulation**
Szilvia B.-S. Béla, Márta Szilvási-Nagy

111 **A General Theory for Finding the Lightest Manmade Structures Using Voronoi and Delaunay**
Mohammed Mustafa Ezzat

119 **Section B3 - Media supported teaching**

119 **Developing New Computational Methodologies for Data Integrated Design for Landscape Architecture**
Pia Fricker

127 **The Importance of Connectivism in Architectural Design Learning: Developing Creative Thinking**
Verónica Paola Rossado Espinoza

133 **Ambient PET(b)ar**
Kateřina Nováková

141 **Geometric Modelling and Reconstruction of Surfaces**
Lidija Pletenac
Section C1 - Collaborative design + Simulation

Horizontal Load Resistance of Ruined Walls Case Study of a Hungarian Castle with the Aid of Laser Scanning Technology
Tamás Ther, István Sajtos

2D-Hygrothermal Simulation of Historical Solid Walls
Michela Pascucci, Elena Lucchi

Responsive Interaction in Dynamic Envelopes with Mesh Tessellation
Sambit Datta, Smolik Andrei, Tengwen Chang

Identification of Required Processes and Data for Facilitating the Assessment of Resources Management Efficiency During Buildings Life Cycle
Moamen M. Seddik, Rabee M. Reffat, Shawkat L. Elkady

Section C2 - Generative Design - 1

Stereotomic Models In Architecture A Generative Design Method to Integrate Spatial and Structural Parameters Through the Application of Subtractive Operations
Juan José Castellón González, Pierluigi D’Acunto

Visual Structuring for Generative Design Search Spaces
Günsu Merin Abbas, İpek Gürsel Dino

Section D2 - Generative Design - 2

Solar Envelope Optimization Method for Complex Urban Environments
Francesco De Luca

Time-based Matter: Suggesting New Formal Variables for Space Design
Delia Dumitrescu

Performance-oriented Design Assisted by a Parametric Toolkit - Case study
Bálint Botzheim, Kitti Gidőfalvy, Patricia Emy Kikunaga, András Szollár, András Reith

Classification of Parametric Design Techniques
Types of Surface Patterns
Réka Sárközi, Péter Iványi, Attila Béla Széll
Section D1 - Visualization and communication

Issues of Control and Command in Digital Design and Architectural Computation
Andre Chaszar

Integrating Point Clouds to Support Architectural Visualization and Communication
Dóra Surina, Gábor Bődő, Konsztantinosz Hadzijanisz, Réka Lovas, Beatrix Szabó, Barnabás Vári, András Fehér

Towards the Measurement of Perceived Architectural Qualities
Benjamin Heinrich, Gabriel Wurzer

Complexity across scales in the work of Le Corbusier
Using box-counting as a method for analysing facades
Wolfgang E. Lorenz

Author’s index
Keynote speakers

REINHARD KÖNIG
Reinhard König studied architecture and urban planning. He completed his PhD thesis in 2009 at the University of Karlsruhe. Dr. König has worked as a research assistant and appointed Interim Professor of the Chair for Computer Science in Architecture at Bauhaus-University Weimar. He heads research projects on the complexity of urban systems and societies, the understanding of cities by means of agent based models and cellular automata as well as the development of evolutionary design methods. From 2013 Reinhard König works at the Chair of Information Architecture, ETH Zurich. In 2014 Dr. König was guest professor at the Technical University Munich. His current research interests are applicability of multi-criteria optimisation techniques for design problems and the development of computational analysis methods for spatial configurations. Results from these research activities are transferred into planning software of the company DecodingSpaces. From 2015 Dr. König heads the Junior-Professorship for Computational Architecture at Bauhaus-University Weimar, and acts as Co-PI at the Future Cities Lab in Singapore, where he focus on Cognitive Design Computing. Main research project: Planning Synthesis & Computational Planning Group see also the project description: Computational Planning Synthesis and his external research web site: Computational Planning Science

BRANKO KOLAREVIC
Branko Kolarevic is a Professor of Architecture at the University of Calgary Faculty of Environmental Design, where he also holds the Chair in Integrated Design and co-directs the Laboratory for Integrative Design (LID). He has taught architecture at several universities in North America and Asia and has lectured worldwide on the use of digital technologies in design and production. He has authored, edited or co-edited several books, including “Building Dynamics: Exploring Architecture of Change” (with Vera Parlac), “Manufacturing Material Effects” (with Kevin Klinger), “Performative Architecture” (with Ali Malkawi) and “Architecture in the Digital Age.” He is a past president of the Association for Computer Aided Design in Architecture (ACADIA), past president of the Canadian Architectural Certification Board (CACB), and was recently elected future president of the Association of Collegiate Schools of Architecture (ACSA). He is a recipient of the ACADIA Award for Innovative Research in 2007 and ACADIA Society Award of Excellence in 2015. He holds doctoral and master’s degrees in design from Harvard University and a diploma engineer in architecture degree from the University of Belgrade.
Geometric Modelling and Reconstruction of Surfaces

Lidija Pletenac¹
¹Faculty of Civil Engineering
University of Rijeka, Croatia
e-mail: lidija.pletenac@uniri.hr

Abstract: New technological environment is present in civil engineering and used in academic education. It is also used in geometric research. This paper presents some examples of different technology, used in surface modelling, surface analysis and iterative form finding. By using a 3D laser scanner, a point cloud of a building can be created. Point clouds allow not only 3D visualization, but also further processing. By using CAD software, a surface can be created from certain parts of point cloud. In this paper, an example of this will be presented.

Keywords: surface modelling, CAD, point cloud

DOI: 10.3311/CAADence.1671

INTRODUCTION
When engineers of today design buildings, they use recent technological improvement: 3D scanning instead of measuring and drawing, a variety of modelling methods, 3D models and BIM. They also use prototyping and reverse engineering. New technologies are also included in today’s education.
The shape of a structure is the basis of every construction project, especially in the field of light structures. Geometry of a surface is of fundamental importance for the behaviour of the structure under load. In the design of structures such as membranes, domes, cable grids, barrel vaults, foldable structures, etc, important areas are also modelling and form-finding process. BIM (building information modelling) requires that all the details of the project are in digital form.

SURFACE MODELLING
Modelling depends on surface properties
Virtual 3D space in CAD can be used as a Euclidean model of the projective space. Surface have to be modelled according to its definition and properties.
Translation surfaces are useful in designing: Part of the surface can be the shape of a dome, over an object. Translation quadrics are cylinders, hyperbolic paraboloid and elliptic paraboloid. Bohemian dome is a quartic translation surface while helicoid can be generated by a helix, translating along a congruent helix [2].
The easiest way to create a model of a translation surface is to translate one (generating) curve along the other (directrix) curve in such a way that a point on the first curve traces the second curve.
Translation surface can be defined as a Minkowsky sum of two curves. The locus of all possible chord midpoints between two given curves is one translation surface (also called midsurface). Conversely, [from the author’s experience [4]]: for a given translation surface there are many pairs of such curves. For each surface on figure 3 such a pair of curves is found using Rhino. Physical interpretation: If endpoints of an elastic thread slide each along its given curve (random mode), its midpoint lies on a translation surface.
Figure 1: Ruled quartic surfaces, modelled using Rhino (own work).

Figure 2: Translation surfaces modelled using Rhino (own work).

Figure 3: Translation surface (left: hyperbolic paraboloid and right: quartic surface) as midsurface of two given curves.
SURFACE ANALYSIS

Shells are curved thin structures, which can take load as the membrane. The thickness h of the shell is small compared to the radius $R_1 > R_2$ of the principal normal curvature of the surface and compared to the dimensions of the object. Shell roofs behaviour depends on the shape of the shell: Shells have compression stresses following the convex curvature while the tension stresses follows the concave curvature. Using CAD software we can observe the normal curvature in any direction, for the considered point of the surface. Curvature analysis offered by Rhino includes Gaussian (K) and mean curvature (H). Curvature graph displays surface normal and normal curvature along u and v lines of the surface.

Using CAD, it is easy to construct the tangent plane in all points on the free edge of the shell. That is important because supports of the shell are taking only forces in the direction, tangent to the shell.

In terms of the Gaussian curvature [3], shells are classified into three groups:

1. Elliptic surfaces, with positive curvature $K > 0$ form synclastic shells (ellipsoid, elliptic paraboloid and two sheets hyperboloid, elliptic surfaces of higher order).

2. Parabolic ($K=0$) shells with a single curvature, are developable everywhere (cones, cylinders and surface traced out by the tangents of any twisted curve).

3. Hyperbolic surfaces, with negative Gaussian (integral) curvature $K < 0$, form anticlastic (saddle-shaped) shells. Such surface crosses its tangent plane (non-degenerated ruled quadrics). Surfaces of higher order may combine elliptic and hyperbolic regions, which are separated by a locus of parabolic points.

Surfaces with constant mean curvature are useful for modelling some physical processes, including the formation of soap bubbles. Mean curvature vanishes $H=0$ on minimal surfaces, such as Scherk surface. Some other surfaces can have regions of mean curvature approximately equal to zero (marked blue on Fig. 8).
Figure 8: Mean curvature of surfaces: Bohemian dome, hyperbolic paraboloid and Scherk surface (own work).

Figure 9: Catenaries, modelled using Grasshopper (own work).
Rhino plug-in for parametric modelling is Grasshopper. Equal resistance catenary, that was necessary for the exact model of Scherk surface, was modelled in Grasshopper, from the equation.

ITERATIVE FORM FINDING

Different methods are in use within form finding processes. Physical models for tensile structure can be rubber sheet or soap membrane. Using inverse method, the shape that took tensile structure under the load should be turned upward. Numerical form finding methods are iterative. Minimal surface can be modelled for given boundary condition, by iterative method, using Rhino-Membrane, a plug-in for Rhinoceros. On Fig. 11 boundary curve consists of four semicircles. In the first case (red) they were four curves, in the second (blue) concave and convex arcs were connected forming in total two curves and in the last (cyan) case all arcs were connected forming one boundary curve. The result depends on the number of curves.

POINT CLOUD

Using 3D laser scanner “FARO Focus” the theatre building “Teatro Fenice” in Rijeka is scanned. Each 3D image consists of several million points. The integrated camera takes photo realistic colour scans. Point cloud scanned data are processed by “SCENE”, a point cloud software that allows not only 3D visualisation but also meshing and exporting in various data formats for further processing.

SURFACE FROM POINT CLOUD

The point cloud can also be imported into a CAD software and used as a basis for modelling. The result can be presented on the web as a digital 3D model of the object. In this example software Rhinoceros was used for processing a point cloud.
There are several reverse engineering plug-ins for Rhino. One of them is *RhinoResurf*. University of Rijeka has recently purchased a multi-material 3D printing system Connex500. It allows simulation of the final product by combining multiple materials with varied properties and tones.

ACKNOWLEDGEMENTS

I would like to thank dr.sc. Nana Palinić, project manager of the pilot project “Teatro Fenice”, for providing point clouds.

REFERENCES

Figure 14: Point cloud - detail of ceiling.

Figure 15: Surface that was generated from point cloud using Patch command in Rhino and software CloudCompare (own work)
Author’s index

<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbas, Günsu Merin</td>
<td>185</td>
</tr>
<tr>
<td>Balla-S. Béla, Szilvia</td>
<td>105</td>
</tr>
<tr>
<td>Bertin, Vito</td>
<td>79</td>
</tr>
<tr>
<td>Botzheim, Bálint</td>
<td>213</td>
</tr>
<tr>
<td>Bödő, Gábor</td>
<td>235</td>
</tr>
<tr>
<td>Castellon Gonzalez, Juan José</td>
<td>177</td>
</tr>
<tr>
<td>Chang, Tengwen</td>
<td>163</td>
</tr>
<tr>
<td>Chaszar, Andre</td>
<td>227</td>
</tr>
<tr>
<td>D’Acunto, Pierluigi</td>
<td>177</td>
</tr>
<tr>
<td>Datta, Sambit</td>
<td>163</td>
</tr>
<tr>
<td>De Luca, Francesco</td>
<td>195</td>
</tr>
<tr>
<td>De Paris, Sabine</td>
<td>55</td>
</tr>
<tr>
<td>Dino, Ipek Gürsel</td>
<td>185</td>
</tr>
<tr>
<td>Dumitrescu, Delia</td>
<td>203</td>
</tr>
<tr>
<td>Elkady, Shawkat L.</td>
<td>169</td>
</tr>
<tr>
<td>Ezzat, Mohammed</td>
<td>111</td>
</tr>
<tr>
<td>Fehér, András</td>
<td>235</td>
</tr>
<tr>
<td>Fricker, Pia</td>
<td>119</td>
</tr>
<tr>
<td>Füzes, Bálint Péter</td>
<td>73</td>
</tr>
<tr>
<td>Gidófalvy, Kitti</td>
<td>213</td>
</tr>
<tr>
<td>Gyulai, Attila</td>
<td>67</td>
</tr>
<tr>
<td>Hadzijanisz, Konsztantinosz</td>
<td>235</td>
</tr>
<tr>
<td>Hegyi, Dezső</td>
<td>73</td>
</tr>
<tr>
<td>Heinrich, Benjamin</td>
<td>243</td>
</tr>
<tr>
<td>Iványi, Péter</td>
<td>221</td>
</tr>
<tr>
<td>Kari, Szabolcs</td>
<td>67</td>
</tr>
<tr>
<td>Kikunaga, Patricia Emy</td>
<td>213</td>
</tr>
<tr>
<td>Koenig, Reinhard</td>
<td>15</td>
</tr>
<tr>
<td>Kolarevic, Branko</td>
<td>27</td>
</tr>
<tr>
<td>Kulcke, Matthias</td>
<td>61</td>
</tr>
<tr>
<td>Lam, Wai Yin</td>
<td>79</td>
</tr>
<tr>
<td>Lellei, László</td>
<td>67</td>
</tr>
<tr>
<td>Lorenz, Wolfgang E.</td>
<td>249</td>
</tr>
<tr>
<td>Lovas, Réka</td>
<td>235</td>
</tr>
<tr>
<td>Lucchi, Elena</td>
<td>155</td>
</tr>
<tr>
<td>Matsubayashi, Michio</td>
<td>87</td>
</tr>
<tr>
<td>Nováková, Kateřina</td>
<td>133</td>
</tr>
<tr>
<td>Nuno Lacerda Lopes, Carlos</td>
<td>55</td>
</tr>
<tr>
<td>Pascucci, Michela</td>
<td>155</td>
</tr>
<tr>
<td>Pletenac, Lidija</td>
<td>141</td>
</tr>
<tr>
<td>Reffat M., Rabee</td>
<td>169</td>
</tr>
<tr>
<td>Reith, András</td>
<td>213</td>
</tr>
<tr>
<td>Riedel, Miklós Márton</td>
<td>67</td>
</tr>
<tr>
<td>Rossado Espinoza, Verónica Paola</td>
<td>127</td>
</tr>
<tr>
<td>Sajtos, István</td>
<td>149</td>
</tr>
<tr>
<td>Sárközi, Réka</td>
<td>221</td>
</tr>
<tr>
<td>Schmitt, Gerhard</td>
<td>15</td>
</tr>
<tr>
<td>Seddik, Moamen M.</td>
<td>169</td>
</tr>
<tr>
<td>Selvær, Harald</td>
<td>99</td>
</tr>
<tr>
<td>Sik, András</td>
<td>67</td>
</tr>
<tr>
<td>Smolik, Andrei</td>
<td>163</td>
</tr>
<tr>
<td>Strommer, László</td>
<td>49</td>
</tr>
<tr>
<td>Sundfør, Ingolf</td>
<td>99</td>
</tr>
<tr>
<td>Surina, Dóra</td>
<td>235</td>
</tr>
<tr>
<td>Szabó, Beatrix</td>
<td>235</td>
</tr>
<tr>
<td>Széll, Attila Béla</td>
<td>221</td>
</tr>
<tr>
<td>Szilvási-Nagy, Márta</td>
<td>105</td>
</tr>
<tr>
<td>Szollár, András</td>
<td>213</td>
</tr>
<tr>
<td>Ther, Tamás</td>
<td>149</td>
</tr>
<tr>
<td>Vári, Barnabás</td>
<td>235</td>
</tr>
<tr>
<td>Watanabe, Shun</td>
<td>41, 87</td>
</tr>
<tr>
<td>Wurzer, Gabriel</td>
<td>243</td>
</tr>
<tr>
<td>Xu, Lei</td>
<td>93</td>
</tr>
<tr>
<td>Yajima, Kazumi</td>
<td>33</td>
</tr>
</tbody>
</table>
The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory.

Architects who keep up with the new designs demanded by the building industry will remain at the forefront of the design process in our information-technology based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process. We can get “back to command”.

The other message of our slogan is <Back to command>.

In the expanding world of IT applications there is a need for the ready change of preliminary models by using parameters and scripts. These approaches retrieve the feeling of command-oriented systems, although, with much greater effectiveness.

Why CAADence in architecture?

"The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By definition, a cadence is a solo that precedes a closing formula, in which the soloist plays a series of personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuosic improvisation."