The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory.

Architects who keep up with the new designs demanded by the building industry will remain at the forefront of the design process in our information-technology based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process.

We can get "back to command".

The other message of our slogan is "Back to command".

In the expanding world of IT applications there is a need for the ready change of preliminary models by using parameters and scripts. These approaches retrieve the feeling of command-oriented systems.

Why CAADence in architecture?

"The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuosic improvisation."
Theme

CAADence in Architecture
Back to command

The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory. Architects who keep up with the new design demanded by the building industry will remain at the forefront of the design process in our IT-based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process. We can get “back to command”.

Our slogan “Back to Command” contains another message. In the expanding world of IT applications, one must be able to change preliminary models readily by using different parameters and scripts. These approaches bring back the feeling of command-oriented systems, although with much greater effectiveness.

Why CAADence in architecture?

“The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By definition, a cadence is a solo that precedes a closing formula, in which the soloist plays a series of personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuoso improvisation.”

Nowadays sophisticated CAAD (Computer Aided Architectural Design) applications might operate in the hand of architects like instruments in the hand of musicians. We have used the word association cadence/caadence as a sort of word play to make this event even more memorable.

Mihály Szoboszlai
Chair of the Organizing Committee
Sponsors

GRAPHISOFT
ARCHICAD

AUTODESK

STUDIO IN-EX
ARCHITECTS & ENGINEERS

MÜEGYETEM 1782

Építészeti Ábrázolás Tanszék
Department of Architectural Representation
Acknowledgement

We would like to express our sincere thanks to all of the authors, reviewers, session chairs, and plenary speakers. We also wish to say thank you to the workshop organizers, who brought practice to theory closer together.

This conference was supported by our sponsors: GRAPHISOFT, AUTODESK, and STUDIO IN-EX. Additionally, the Faculty of Architecture at Budapest University of Technology and Economics provided support through its “Future Fund” (Jövő Alap), helping to bring internationally recognized speakers to this conference.

Members of our local organizing team have supported this event with their special contribution – namely, their hard work in preparing and managing this conference.

Mihály Szoboszlai
Chair of the Organizing Committee

Local conference staff
Ádám Tamás Kovács, Bodó Bánáti, Imre Batta, Bálint Csabay, Benedek Gászpor, Alexandra Göőz, Péter Kaknics, András Zsolt Kovács, Erzsébet Kőnigné Tóth, Bence Krajnyák, Levente Lajtos, Pál Ledneczki, Mark Searle, Béla Marsal, Albert Máté, Boldizsár Medvey, Johanna Pék, Gábor Rátonyi, László Strommer, Zsanett Takács, Péter Zsigmond
Workshop tutors

Algorithmic Design through BIM

- Erik Havadi
- Laura Baróthy

Working with BIM Analyses

- Balázs Molnár
- Máté Csócsics
- Zsolt Oláh

OPEN BIM

- Ákos Rechtorisz
- Tamás Erős

GDL in Daily Work

- Gergely Fehér
- Dominika Bobály
- Gergely Hári
- James Badcock
List of Reviewers

Abdelmohsen, Sherif - Egypt
Achten, Henri - Czech Republic
Agkathidis, Asterios - United Kingdom
Asanowicz, Aleksander - Poland
Bhatt, Anand - India
Braumann, Johannes - Austria
Celani, Gabriela - Brazil
Cerovsek, Tomo - Slovenia
Chaszar, Andre - Netherlands
Chronis, Angelos - Spain
Dokonal, Wolfgang - Austria
Estévez, Alberto T. - Spain
Fricker, Pia - Switzerland
Herr, Christiane M. - China
Hoffmann, Miklós - Hungary
Juhász, Imre - Hungary
Jutraz, Anja - Slovenia
Kieferle, Joachim B. - Germany
Klinc, Robert - Slovenia
Koch, Volker - Germany
Kolarevic, Branko - Canada
König, Reinhard - Switzerland
Krakhofer, Stefan - Hong Kong
van Leeuwen, Jos - Netherlands
Lomker, Thorsten - United Arab Emirates
Lorenz, Wolfgang - Austria
Loveridge, Russell - Switzerland
Mark, Earl - United States
Molnár, Emil - Hungary
Mueller, Volker - United States
Nourian, Pirouz - Netherlands
Oxman, Rivka - Israel
Parlac, Vera - Canada
Quintus, Alex - United Arab Emirates
Searle, Mark - Hungary
Szoboszlai, Mihály - Hungary
Tuncer, Bige - Singapore
Verbeke, Johan - Belgium
Vermillion, Joshua - United States
Watanabe, Shun - Japan
Wojtowicz, Jerzy - Poland
Wurzer, Gabriel - Austria
Yamu, Claudia - Netherlands
Contents

14 Keynote speakers

15 Keynote

15 Backcasting and a New Way of Command in Computational Design
Reinhard Koenig, Gerhard Schmitt

27 Half Cadence: Towards Integrative Design
Branko Kolarevic

33 Call from the industry leaders

33 Kajima’s BIM Theory & Methods
Kazumi Yajima

41 Section A1 - Shape grammar

41 Minka, Machiya, and Gassho-Zukuri
Procedural Generation of Japanese Traditional Houses
Shun Watanabe

49 3D Shape Grammar of Polyhedral Spires
László Strommer

55 Section A2 - Smart cities

55 Enhancing Housing Flexibility Through Collaboration
Sabine Ritter De Paris, Carlos Nuno Lacerda Lopes

61 Connecting Online-Configurators (Including 3D Representations) with CAD-Systems
Small Scale Solutions for SMEs in the Design-Product and Building Sector
Matthias Kulcke

67 BIM to GIS and GIS to BIM
Szabolcs Kari, László Lellei, Attila Gyulai, András Sik, Miklós Márton Riedel
73 Section A3 - Modeling with scripting

73 Parametric Details of Membrane Constructions
Bálint Péter Füzes, Dezső Hegyi

79 De-Script-ion: Individuality / Uniformity
Helen Lam Wai-yin, Vito Bertin

87 Section B1 - BIM

87 Forecasting Time between Problems of Building Components by Using BIM
Michio Matsubayashi, Shun Watanabe

93 Integration of Facility Management System and Building Information Modeling
Lei Xu

99 BIM as a Transformer of Processes
Ingolf Sundfør, Harald Selvær

105 Section B2 - Smooth transition

105 Changing Tangent and Curvature Data of B-splines via Knot Manipulation
Szilvia B.-S. Béla, Márta Szilvási-Nagy

111 A General Theory for Finding the Lightest Manmade Structures Using Voronoi and Delaunay
Mohammed Mustafa Ezzat

119 Section B3 - Media supported teaching

119 Developing New Computational Methodologies for Data Integrated Design for Landscape Architecture
Pia Fricker

127 The Importance of Connectivism in Architectural Design Learning: Developing Creative Thinking
Verónica Paola Rossado Espinoza

133 Ambient PET(b)ar
Kateřina Nováková

141 Geometric Modelling and Reconstruction of Surfaces
Lidija Pletenac
149 Section C1 - Collaborative design + Simulation
149 Horizontal Load Resistance of Ruined Walls Case Study of a Hungarian Castle with the Aid of Laser Scanning Technology
Tamás Ther, István Sajtos
155 2D-Hygrothermal Simulation of Historical Solid Walls
Michela Pascucci, Elena Lucchi
163 Responsive Interaction in Dynamic Envelopes with Mesh Tessellation
Sambit Datta, Smolik Andrei, Tengwen Chang
169 Identification of Required Processes and Data for Facilitating the Assessment of Resources Management Efficiency During Buildings Life Cycle
Moamen M. Seddik, Rabee M. Reffat, Shawkat L. Elkady

177 Section C2 - Generative Design - 1
177 Stereotomic Models In Architecture A Generative Design Method to Integrate Spatial and Structural Parameters Through the Application of Subtractive Operations
Juan José Castellón González, Pierluigi D’Acunto
185 Visual Structuring for Generative Design Search Spaces
Günsu Merin Abbas, İpek Gürsel Dino

195 Section D2 - Generative Design - 2
195 Solar Envelope Optimization Method for Complex Urban Environments
Francesco De Luca
203 Time-based Matter: Suggesting New Formal Variables for Space Design
Delia Dumitrescu
213 Performance-oriented Design Assisted by a Parametric Toolkit - Case study
Bálint Botzheim, Kitti Gidófalvy, Patricia Emy Kikunaga, András Szollár, András Reith
221 Classification of Parametric Design Techniques Types of Surface Patterns
Réka Sárközi, Péter Iványi, Attila Béla Széll
227 Section D1 - Visualization and communication

227 Issues of Control and Command in Digital Design and Architectural Computation
Andre Chaszar

235 Integrating Point Clouds to Support Architectural Visualization and Communication
Dóra Surina, Gábor Bődő, Konsztantinosz Hadzijanisz, Réka Lovas, Beatrix Szabó, Barnabás Vári, András Fehér

243 Towards the Measurement of Perceived Architectural Qualities
Benjamin Heinrich, Gabriel Wurzer

249 Complexity across scales in the work of Le Corbusier
Using box-counting as a method for analysing facades
Wolfgang E. Lorenz

256 Author’s index
Keynote speakers

REINHARD KÖNIG
Reinhard König studied architecture and urban planning. He completed his PhD thesis in 2009 at the University of Karlsruhe. Dr. König has worked as a research assistant and appointed Interim Professor of the Chair for Computer Science in Architecture at Bauhaus-University Weimar. He heads research projects on the complexity of urban systems and societies, the understanding of cities by means of agent based models and cellular automata as well as the development of evolutionary design methods. From 2013 Reinhard König works at the Chair of Information Architecture, ETH Zurich. In 2014 Dr. König was guest professor at the Technical University Munich. His current research interests are applicability of multi-criteria optimisation techniques for design problems and the development of computational analysis methods for spatial configurations. Results from these research activities are transferred into planning software of the company DecodingSpaces. From 2015 Dr. König heads the Junior-Professorship for Computational Architecture at Bauhaus-University Weimar, and acts as Co-PI at the Future Cities Lab in Singapore, where he focus on Cognitive Design Computing. Main research project: Planning Synthesis & Computational Planning Group see also the project description: Computational Planning Synthesis and his external research web site: Computational Planning Science

BRANKO KOLAREVIC
Branko Kolarevic is a Professor of Architecture at the University of Calgary Faculty of Environmental Design, where he also holds the Chair in Integrated Design and co-directs the Laboratory for Integrative Design (LID). He has taught architecture at several universities in North America and Asia and has lectured worldwide on the use of digital technologies in design and production. He has authored, edited or co-edited several books, including “Building Dynamics: Exploring Architecture of Change” (with Vera Parlac), “Manufacturing Material Effects” (with Kevin Klinger), “Performative Architecture” (with Ali Malkawi) and “Architecture in the Digital Age.” He is a past president of the Association for Computer Aided Design in Architecture (ACADIA), past president of the Canadian Architectural Certification Board (CACB), and was recently elected future president of the Association of Collegiate Schools of Architecture (ACSA). He is a recipient of the ACADIA Award for Innovative Research in 2007 and ACADIA Society Award of Excellence in 2015. He holds doctoral and master’s degrees in design from Harvard University and a diploma engineer in architecture degree from the University of Belgrade.
Classification of Parametric Design Techniques
Types of Surface Patterns

Réka Sárközi¹, Péter Iványi², Attila Béla Széll³
¹,²,³Breuer Marcell Doctoral School, Faculty of Engineering and Information Technology, University of Pécs, Hungary
¹e-mail: sarkozi.reka.00@mik.pte.hu

Abstract: The main objective of this paper is to classify the techniques of parametric design, and make the existing classification system more exact. The previously created classification was based on shape and logical aspects, which granted a good approach for parametric design techniques, and helped provide an overview. However this system, for the sake of scientific precision, needed further identification at points. In this paper a more precise classification is shown, which is based on the interpretation of patterns as graphs. This enables their topology to be studied in a more exact, numerical way.

Keywords: Generative design, Parametric design, Structural design, Structural shapes

DOI: 10.3311/CAADence.1661

INTRODUCTION
In order to understand and learn how to use parametric design to shape a building, it is very useful to understand the forms and patterns which can be used. These parametric structures are generated by commands of the design program, which is very similar to a programming language. This results in the design of structures which are based on geometry and mathematics. Using a classification system, which is based on the mathematical properties of these structures, it is easier to understand how they were made and easier to learn, how other similar structures can be designed and how many possibilities are available. The question, whether the pattern of a structure is a tiling or a subdivision is one of the first questions when classifying a structure in this way.

In previous research [1], classification was based on shape and logical aspects, where mathematically similar structures made up a class. It was based on many different sources [2,3,4,5,6,7], and as a result of these, the geometric properties provided the most basic selection rules. This method is similar to the present classification system, but it requires further refinement. This paper shows how the refinement of the Surfaces group of the previous classification system is represented.

In the previous paper [1] two elementary categories of parametric design techniques were differentiated: surfaces and formations. Surfaces were defined as structures which consist of a pattern on a planar or curved surface. Formations were defined as structures that occupy a more extensive part of space. Since a clear borderline between the groups is absent, the deciding rule is that if the parametric structure has a structural role then it is a formation. Modifiers were mentioned as a third group, which modify the members of the previous two groups. This paper focuses solely on the surfaces as other parts of the group need further clarification.
CLASSIFICATION OF SURFACES

The two properties of surfaces described in paper [1] are also used here, namely form and pattern. The classification of the form of surfaces has a full mathematical foundation and a surface can be parabolic, elliptic, hyperbolic and complex in form. However, the definitions of the grouping of the types of patterns should be changed as follows.

- Patterns remaining on the surface:
 - tiling;
 - subdivision;
 - packing - the content of this group didn’t change, but it will be called lacunary pattern in future for the sake of clarity;
- Tridimensional patterns:
 - open;
 - closed.

The classification remained unchanged from the aspect that tridimensional patterns are considered as a three-dimensional extension of patterns remaining on the surface. The significant changes concern tiling, subdivision and lacunary patterns. Two pattern types, tiling and subdivision, will be the principal topologies while, in the future, the lacunary pattern will be a modification of these two.

The main difference between tiling and subdivision is that tiling focuses on making identical or analogue tiles, while subdivision means dividing the surface at random tiles by applying some rules. In other words, the purpose of the first one is the creation of tiles, while the second is the division of the surface, as is indicated by the name. To accurately define the difference mathematically, we need to interpret these patterns as graphs. Using graphs to construe difficult models and patterns of the real world is a good working method, which can be seen in a wide range of scientific research. [8,9,10,11,12]

Another modification was made; the mesh, which will be mentioned as the foundation of making the pattern instead of a type of subdivision as in paper [1], because the pattern is created by a mesh in every instance. This is a transition between the physical appearance of the pattern and the full theoretical graph-like interpretation.

TOPOLOGY OF PATTERNS

The patterns are interpreted as undirected simple planar graphs. This means that edges have no orientation, both multiple edges and loops are disallowed and vertices and edges can be drawn in a plane as long as no edge intersects with any other edge.

This means that subdivision is a pattern, for which - interpreted as a graph - one of the following is true:

- the number of neighbours of inside vertices varies;
- or
- the number of vertices and edges of inner cycles varies;

where a cycle is a continuous series of vertices and edges, where each member participates only once and the point of origin is identical to the point of arrival.

Tiling is a pattern, for which - interpreted as a graph - the following conditions are both true:

- the number of neighbours of inside vertices are equal;
- and
- the number of vertices and edges of inner cycles are equal.

The side vertices and edges of the graphs do not obey this law.

A pattern is called a lacunary pattern, when the interpretation of the graph can be tiling or subdivision; however, the surface contains uncovered areas.

Two examples are presented for this thesis which provide a better contrast between the groups.

EXAMPLE 1

Subdivision

The main idea of the Voronoi-diagram is that the surface is divided into cells based on a predefined set of points, where every point of the surface belongs to the cell of that predefined point to which it is closest. In this example, the set of points is taken at random, therefore the cells will be irregular. It is possible for a vertex to have more than three edges, for example when the points of the set, which were the base points of the Voronoi-diagram, are the points of a square mesh, the
Voronoi-diagram is also a square mesh, and each of its vertices have four edges. However when the set of points are truly random, three edges in a vertex are guaranteed, as is demonstrated in Fig. 1c. Though some vertices can be seen, as it has four edges at first glance, there are actually two points connected by a tiny edge, which cannot be seen at this magnification. However the cells, which create the cycles in the graph, are different polygons, which consist of a variable amount of vertices and edges. So the Voronoi-diagram - when it is made of random points - can be considered as a subdivision.

An interesting phenomenon is that when the points of the set, which were the base points of the Voronoi-diagram, are connected with their neighbours then it forms a triangle mesh. Those points are considered neighbour points when Voronoi-cells have a common edge. On a graph of this mesh the cycles always contain three vertices, however the number of neighbouring vertices of a vertex is variable. This is the dual of the Voronoi subdivision and it is called the Delaunay triangulation, as shown in Fig. 1b.

Tiling

In the case of hexagonal tiling the Voronoi division is also applied although the initial points of the cells are set to provide regular hexagonal tiling. If a plane is to be divided into regular hexagons with Voronoi division, then the vertices have to be taken of a regular triangular mesh as the initial points of cells. The cells created in this way are all regular hexagons, so in the case of the graph interpretation of the pattern, the inside vertices belong to the same amount of edges and the inside cycles consist of the same number of edges and vertices, as shown in Fig. 2. Therefore this method is considered as tiling.

In the case when a similar pattern is applied on a hyperbolic - or any non-planar - surface, then the hexagons are projected to the surface, but the topology remains unchanged. As shown in Fig. 2d, the hexagons are not perfectly equal, but it still remains as tiling.
Lacunary pattern

The third example is circle packing. This is created by taking the triangular mesh used at the Voronoi division, then this mesh is optimized so that tangent circles can be created [13]. This optimization does not concern the topology of the mesh; it merely changes the position of points and the length of the edges. So far the mesh, which helped create the circles, makes the statement that the inside cycles have the same number of edges and vertices [three] true. But not the same number of edges belong to the inside vertices, as it is shown in Fig. 3e. So this lacunary pattern is derived from subdivision.

The original name ‘packing’ comes from ‘circle packing’ [13], which means that most circles try to squeeze (pack) into a rectangle ‘box’. That is why the ‘packing’ term is a good match with reality in this case, but as the second example shows it is not suitable in every instance. The term ‘packing’ in general is used for geometric problems, when a rectangle or a box is to be filled in the densest way with certain planar shapes or bodies. That is why we changed the name of the group to a lacunary pattern.

In every case the base of these patterns was the Voronoi-diagram or its initial points. Patterns are created by dividing rectangles in the second example.

EXAMPLE 2

Subdivision

In this case the starting point is five identical rectangles which are divided into two with a vertical line. The position of these lines is random, therefore the five rectangles are divided at different positions. The resulting ten different rectangles are divided into two again, horizontally this time and again at random. Then those from the new-

Figure 3:

a) Circle packing;
b) Circle packing with the mesh made from its initial points;
c) Mesh of the original Voronoi-diagram;
d) Optimized mesh used to circle packing;
e) Number of neighbours of vertices in the mesh of the circle packing;
f) Number of vertices of cycles in the mesh of circle packing
est rectangles whose area exceeds a certain size are divided again vertically, similarly to the previous divisions. The result is a surface consisting of rectangles of different areas and ratios, which appears as a surface covered with totally random rectangles. It can be seen from the transition of the pattern to a graph that every inner vertex has three neighbours, but a cycle can consist of four, five, six, even eight vertices. This subdivision is shown in Fig. 4. Theoretically it is possible for the vertices to have four neighbours, in common with the Voronoi division, if the neighbouring rectangles are divided at the same place.

Tiling

If the base rectangles are divided with the previous set of rules, but always at the half of the edges, the result will be a pattern consisting of identical rectangles, where every vertex has four neighbours and every cycle has four vertices, as is shown in Fig. 5a and 5b. If this pattern is applied on a non-planar surface, the rectangles may not be identical but the topology will not change, as in the case of the hexagonal tiling.
LACUNARY PATTERN

In the case of a lacunary pattern the tiling is modified by pulling certain vertices apart, which result in rhombuses. In this case it can be seen in Fig. 5c and 5d, that every cycle consists of four vertices but one vertex has three or six neighbours. However it is a tiling as well if there are different types of vertices and cycles, but this difference comes from the decision of the designer and is not due to randomness. Because these types of vertices are predefined it is also tiling made up of two tiles. When one type of tile is not used, it results in a lacunary pattern. Most historical architectural patterns are tilings, which consist of more than one type of tile. [14,15]

CONCLUSION

By representing the patterns as graphs, it helps us to construct a clear and simply usable topological classification for patterns of parametric design techniques. Because the surface modifying patterns are derived from the patterns remaining on the surfaces their topology is identical. A final question that may come up is whether this classification could be extended to formations as well. This question is subject to further research because while some formations have a clear, easy to see topology, others require further reflection.

REFERENCES

Author’s index

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbas, Günsu Merin</td>
<td>185</td>
</tr>
<tr>
<td>Balla-S. Béla, Szilvia</td>
<td>105</td>
</tr>
<tr>
<td>Bertin, Vito</td>
<td>79</td>
</tr>
<tr>
<td>Botzheim, Bálint</td>
<td>213</td>
</tr>
<tr>
<td>Bödő, Gábor</td>
<td>235</td>
</tr>
<tr>
<td>Castellon Gonzalez, Juan José</td>
<td>177</td>
</tr>
<tr>
<td>Chang, Tengwen</td>
<td>163</td>
</tr>
<tr>
<td>Chaszar, Andre</td>
<td>227</td>
</tr>
<tr>
<td>D’Acunto, Pierluigi</td>
<td>177</td>
</tr>
<tr>
<td>Datta, Sambit</td>
<td>163</td>
</tr>
<tr>
<td>De Luca, Francesco</td>
<td>195</td>
</tr>
<tr>
<td>De Paris, Sabine</td>
<td>55</td>
</tr>
<tr>
<td>Dino, Ipek Gürsel</td>
<td>185</td>
</tr>
<tr>
<td>Dumitrescu, Delia</td>
<td>203</td>
</tr>
<tr>
<td>Elkady, Shawkat L.</td>
<td>169</td>
</tr>
<tr>
<td>Ezzat, Mohammed</td>
<td>111</td>
</tr>
<tr>
<td>Fehér, András</td>
<td>235</td>
</tr>
<tr>
<td>Fricker, Pia</td>
<td>119</td>
</tr>
<tr>
<td>Füzes, Bálint Péter</td>
<td>73</td>
</tr>
<tr>
<td>Gidófalvy, Kitti</td>
<td>213</td>
</tr>
<tr>
<td>Gyulai, Attila</td>
<td>67</td>
</tr>
<tr>
<td>Hadzijanisz, Konsztantinosz</td>
<td>235</td>
</tr>
<tr>
<td>Hegyi, Dezső</td>
<td>73</td>
</tr>
<tr>
<td>Heinrich, Benjamin</td>
<td>243</td>
</tr>
<tr>
<td>Iványi, Péter</td>
<td>221</td>
</tr>
<tr>
<td>Kari, Szabolcs</td>
<td>67</td>
</tr>
<tr>
<td>Kikunaga, Patricia Emy</td>
<td>213</td>
</tr>
<tr>
<td>Koenig, Reinhard</td>
<td>15</td>
</tr>
<tr>
<td>Kolarevic, Branko</td>
<td>27</td>
</tr>
<tr>
<td>Kulcke, Matthias</td>
<td>61</td>
</tr>
<tr>
<td>Lam, Wai Yin</td>
<td>79</td>
</tr>
<tr>
<td>Lellei, László</td>
<td>67</td>
</tr>
<tr>
<td>Lorenz, Wolfgang E.</td>
<td>249</td>
</tr>
<tr>
<td>Lovas, Réka</td>
<td>235</td>
</tr>
<tr>
<td>Lucchi, Elena</td>
<td>155</td>
</tr>
<tr>
<td>Matsubayashi, Michio</td>
<td>87</td>
</tr>
<tr>
<td>Nováková, Kateřina</td>
<td>133</td>
</tr>
<tr>
<td>Nuno Lacerda Lopes, Carlos</td>
<td>55</td>
</tr>
<tr>
<td>Pascucci, Michela</td>
<td>155</td>
</tr>
<tr>
<td>Pletenac, Lidija</td>
<td>141</td>
</tr>
<tr>
<td>Reffat M., Rabee</td>
<td>169</td>
</tr>
<tr>
<td>Reith, András</td>
<td>213</td>
</tr>
<tr>
<td>Riedel, Miklós Márton</td>
<td>67</td>
</tr>
<tr>
<td>Rossado Espinoza, Verónica Paola</td>
<td>127</td>
</tr>
<tr>
<td>Sajtos, István</td>
<td>149</td>
</tr>
<tr>
<td>Sárközi, Réka</td>
<td>221</td>
</tr>
<tr>
<td>Schmitt, Gerhard</td>
<td>15</td>
</tr>
<tr>
<td>Seddik, Moamen M.</td>
<td>169</td>
</tr>
<tr>
<td>Selvær, Harald</td>
<td>99</td>
</tr>
<tr>
<td>Sik, András</td>
<td>67</td>
</tr>
<tr>
<td>Smolik, Andrei</td>
<td>163</td>
</tr>
<tr>
<td>Strommer, László</td>
<td>49</td>
</tr>
<tr>
<td>Sundfør, Ingolf</td>
<td>99</td>
</tr>
<tr>
<td>Surina, Dóra</td>
<td>235</td>
</tr>
<tr>
<td>Szabó, Beatrix</td>
<td>235</td>
</tr>
<tr>
<td>Széll, Attila Béla</td>
<td>221</td>
</tr>
<tr>
<td>Szilvási-Nagy, Márta</td>
<td>105</td>
</tr>
<tr>
<td>Szollár, András</td>
<td>213</td>
</tr>
<tr>
<td>Ther, Tamás</td>
<td>149</td>
</tr>
<tr>
<td>Vári, Barnabás</td>
<td>235</td>
</tr>
<tr>
<td>Watanabe, Shun</td>
<td>41, 87</td>
</tr>
<tr>
<td>Wurzer, Gabriel</td>
<td>243</td>
</tr>
<tr>
<td>Xu, Lei</td>
<td>93</td>
</tr>
<tr>
<td>Yajima, Kazumi</td>
<td>33</td>
</tr>
</tbody>
</table>
The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory.

Architects who keep up with the new designs demanded by the building industry will remain at the forefront of the design process in our information-technology based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process. We can get “back to command”.

The other message of our slogan is <Back to command>.

In the expanding world of IT applications there is a need for the ready change of preliminary models by using parameters and scripts. These approaches retrieve the feeling of command-oriented systems, although, with much greater effectiveness.

Why CAADence in architecture?

"The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By definition, a cadence is a solo that precedes a closing formula, in which the soloist plays a series of personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuosic improvisation."