The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory.

Architects who keep up with the new designs demanded by the building industry will remain at the forefront of the design process in our information-technology based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process. We can get "back to command".

The other message of our slogan is Back to command.

In the expanding world of IT applications there is a need for the ready change of preliminary models by using parameters and scripts. These approaches retrieve the feeling of command-oriented systems, DOWKRXJKZLWKPXFKJUDWHUHFWLYHQHVV

Why CAADence in architecture?

"The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By GHȴQLWLRQDFDGHQFHLVDVRORWKDWSUHFHGHVDFORVLQJIRUPXODLQZKLFKWKHVRORLVWSODVDVHULHVRI personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuosic improvisation."
CAADEnce in architecture
Back to command
Edited by Mihály Szoboszlai
CAADence in Architecture
Back to command

Proceedings of the International Conference on Computer Aided Architectural Design

16-17 June 2016
Budapest, Hungary
Faculty of Architecture
Budapest University of Technology and Economics

Edited by
Mihály Szoboszlai
Theme

CAADence in Architecture
Back to command

The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory. Architects who keep up with the new design demanded by the building industry will remain at the forefront of the design process in our IT-based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process. We can get “back to command”.

Our slogan ”Back to Command” contains another message. In the expanding world of IT applications, one must be able to change preliminary models readily by using different parameters and scripts. These approaches bring back the feeling of command-oriented systems, although with much greater effectiveness.

Why CAADence in architecture?

“The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By definition, a cadence is a solo that precedes a closing formula, in which the soloist plays a series of personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuosic improvisation.”

Nowadays sophisticated CAAD (Computer Aided Architectural Design) applications might operate in the hand of architects like instruments in the hand of musicians. We have used the word association cadence/caadence as a sort of word play to make this event even more memorable.

Mihály Szoboszlai
Chair of the Organizing Committee
Acknowledgement

We would like to express our sincere thanks to all of the authors, reviewers, session chairs, and plenary speakers. We also wish to say thank you to the workshop organizers, who brought practice to theory closer together.

This conference was supported by our sponsors: GRAPHISOFT, AUTODESK, and STUDIO IN-EX. Additionally, the Faculty of Architecture at Budapest University of Technology and Economics provided support through its “Future Fund” (Jövő Alap), helping to bring internationally recognized speakers to this conference.

Members of our local organizing team have supported this event with their special contribution – namely, their hard work in preparing and managing this conference.

Mihály Szoboszlai
Chair of the Organizing Committee

Local conference staff
Ádám Tamás Kovács, Bodó Bánáti, Imre Batta, Bálint Csabay, Benedek Gászpor, Alexandra Göőz, Péter Kaknics, András Zsolt Kovács, Erzsébet Kőnigné Tóth, Bence Krajnyák, Levente Lajtos, Pál Ledneczki, Mark Searle, Béla Marsal, Albert Máté, Boldizsár Medvey, Johanna Pék, Gábor Rátonyi, László Strommer, Zsanett Takács, Péter Zsigmond
Workshop tutors

Algorithmic Design through BIM
 Erik Havadi
 Laura Baróthy

Working with BIM Analyses
 Balázs Molnár
 Máté Csócsics
 Zsolt Oláh

OPEN BIM
 Ákos Rechtorisz
 Tamás Erős

GDL in Daily Work
 Gergely Fehér
 Dominika Bobály
 Gergely Hári
 James Badcock
List of Reviewers

Abdelmohsen, Sherif - Egypt
Achten, Henri - Czech Republic
Agkathidis, Asterios - United Kingdom
Asanowicz, Aleksander - Poland
Bhatt, Anand - India
Braumann, Johannes - Austria
Celani, Gabriela - Brazil
Cerovsek, Tomo - Slovenia
Chaszar, Andre - Netherlands
Chronis, Angelos - Spain
Dokonal, Wolfgang - Austria
Estévez, Alberto T. - Spain
Fricker, Pia - Switzerland
Herr, Christiane M. - China
Hoffmann, Miklós - Hungary
Juhász, Imre - Hungary
Jutraz, Anja - Slovenia
Kieferle, Joachim B. - Germany
Klinc, Robert - Slovenia
Koch, Volker - Germany
Kolarevic, Branko - Canada
König, Reinhard - Switzerland
Krakhofer, Stefan - Hong Kong
van Leeuwen, Jos - Netherlands
Lomker, Thorsten - United Arab Emirates
Lorenz, Wolfgang - Austria
Loveridge, Russell - Switzerland
Mark, Earl - United States
Molnár, Emil - Hungary
Mueller, Volker - United States
Nourian, Pirouz - Netherlands
Oxman, Rivka - Israel
Parlac, Vera - Canada
Quintus, Alex - United Arab Emirates
Searle, Mark - Hungary
Szoboszlai, Mihály - Hungary
Tuncer, Bige - Singapore
Verbeke, Johan - Belgium
Vermillion, Joshua - United States
Watanabe, Shun - Japan
Wojtowicz, Jerzy - Poland
Wurzer, Gabriel - Austria
Yamu, Claudia - Netherlands
Contents

14 Keynote speakers

15 Keynote
15 Backcasting and a New Way of Command in Computational Design
 Reinhard Koenig, Gerhard Schmitt
27 Half Cadence: Towards Integrative Design
 Branko Kolarevic

33 Call from the industry leaders
33 Kajima’s BIM Theory & Methods
 Kazumi Yajima

41 Section A1 - Shape grammar
41 Minka, Machiya, and Gassho-Zukuri
 Procedural Generation of Japanese Traditional Houses
 Shun Watanabe
49 3D Shape Grammar of Polyhedral Spires
 László Strommer

55 Section A2 - Smart cities
55 Enhancing Housing Flexibility Through Collaboration
 Sabine Ritter De Paris, Carlos Nuno Lacerda Lopes
61 Connecting Online-Configurators (Including 3D Representations) with
 CAD-Systems
 Small Scale Solutions for SMEs in the Design-Product and Building Sector
 Matthias Kulcke
67 BIM to GIS and GIS to BIM
 Szabolcs Kari, László Lellei, Attila Gyulai, András Sik, Miklós Márton Riedel
73 **Section A3 - Modeling with scripting**

73 **Parametric Details of Membrane Constructions**
Bálint Péter Füzes, Dezső Hegyi

79 **De-Script-ion: Individuality / Uniformity**
Helen Lam Wai-yin, Vito Bertin

87 **Section B1 - BIM**

87 **Forecasting Time between Problems of Building Components by Using BIM**
Michio Matsubayashi, Shun Watanabe

93 **Integration of Facility Management System and Building Information Modeling**
Lei Xu

99 **BIM as a Transformer of Processes**
Ingolf Sundfør, Harald Selvær

105 **Section B2 - Smooth transition**

105 **Changing Tangent and Curvature Data of B-splines via Knot Manipulation**
Szilvia B.-S. Béla, Márta Szilvási-Nagy

111 **A General Theory for Finding the Lightest Manmade Structures Using Voronoi and Delaunay**
Mohammed Mustafa Ezzat

119 **Section B3 - Media supported teaching**

119 **Developing New Computational Methodologies for Data Integrated Design for Landscape Architecture**
Pia Fricker

127 **The Importance of Connectivism in Architectural Design Learning: Developing Creative Thinking**
Verónica Paola Rossado Espinoza

133 **Ambient PET(b)ar**
Kateřina Nováková

141 **Geometric Modelling and Reconstruction of Surfaces**
Lidija Pletenac
Section C1 - Collaborative design + Simulation

149 Horizontal Load Resistance of Ruined Walls Case Study of a Hungarian Castle with the Aid of Laser Scanning Technology
Tamás Ther, István Sajtos

155 2D-Hygrothermal Simulation of Historical Solid Walls
Michela Pascucci, Elena Lucchi

163 Responsive Interaction in Dynamic Envelopes with Mesh Tessellation
Sambit Datta, Smolik Andrei, Tengwen Chang

169 Identification of Required Processes and Data for Facilitating the Assessment of Resources Management Efficiency During Buildings Life Cycle
Moamen M. Seddik, Rabee M. Reffat, Shawkat L. Elkady

Section C2 - Generative Design -1

177 Stereotomic Models In Architecture A Generative Design Method to Integrate Spatial and Structural Parameters Through the Application of Subtractive Operations
Juan José Castellón González, Pierluigi D’Acunto

185 Visual Structuring for Generative Design Search Spaces
Günsu Merin Abbas, İpek Gürsel Dino

Section D2 - Generative Design - 2

195 Solar Envelope Optimization Method for Complex Urban Environments
Francesco De Luca

203 Time-based Matter: Suggesting New Formal Variables for Space Design
Delia Dumitrescu

213 Performance-oriented Design Assisted by a Parametric Toolkit - Case study
Bálint Botzheim, Kitti Gidófalvy, Patricia Emy Kikunaga, András Szollár, András Reith

221 Classification of Parametric Design Techniques Types of Surface Patterns
Réka Sárközi, Péter Iványi, Attila Béla Széll
227 Section D1 - Visualization and communication

227 Issues of Control and Command in Digital Design and Architectural Computation
Andre Chaszar

235 Integrating Point Clouds to Support Architectural Visualization and Communication
Dóra Surina, Gábor Bödő, Konsztantinosz Hadzijanisz, Réka Lovas, Beatrix Szabó, Barnabás Vári, András Fehér

243 Towards the Measurement of Perceived Architectural Qualities
Benjamin Heinrich, Gabriel Wurzer

249 Complexity across scales in the work of Le Corbusier
Using box-counting as a method for analysing facades
Wolfgang E. Lorenz

256 Author’s index
Keynote speakers

REINHARD KÖNIG

Reinhard König studied architecture and urban planning. He completed his PhD thesis in 2009 at the University of Karlsruhe. Dr. König has worked as a research assistant and appointed Interim Professor of the Chair for Computer Science in Architecture at Bauhaus-University Weimar. He heads research projects on the complexity of urban systems and societies, the understanding of cities by means of agent based models and cellular automata as well as the development of evolutionary design methods. From 2013 Reinhard König works at the Chair of Information Architecture, ETH Zurich. In 2014 Dr. König was guest professor at the Technical University Munich. His current research interests are applicability of multi-criteria optimisation techniques for design problems and the development of computational analysis methods for spatial configurations. Results from these research activities are transferred into planning software of the company DecodingSpaces. From 2015 Dr. König heads the Junior-Professorship for Computational Architecture at Bauhaus-University Weimar, and acts as Co-PI at the Future Cities Lab in Singapore, where he focus on Cognitive Design Computing.

Main research project: Planning Synthesis & Computational Planning Group see also the project description: Computational Planning Synthesis and his external research web site: Computational Planning Science

BRANKO KOLAREVIC

Branko Kolarevic is a Professor of Architecture at the University of Calgary Faculty of Environmental Design, where he also holds the Chair in Integrated Design and co-directs the Laboratory for Integrative Design (LID). He has taught architecture at several universities in North America and Asia and has lectured worldwide on the use of digital technologies in design and production. He has authored, edited or co-edited several books, including “Building Dynamics: Exploring Architecture of Change” (with Vera Parlac), “Manufacturing Material Effects” (with Kevin Klinger), “Performative Architecture” (with Ali Malkawi) and “Architecture in the Digital Age.” He is a past president of the Association for Computer Aided Design in Architecture (ACADIA), past president of the Canadian Architectural Certification Board (CACB), and was recently elected future president of the Association of Collegiate Schools of Architecture (ACSA). He is a recipient of the ACADIA Award for Innovative Research in 2007 and ACADIA Society Award of Excellence in 2015. He holds doctoral and master’s degrees in design from Harvard University and a diploma engineer in architecture degree from the University of Belgrade.
Solar Envelope Optimization Method for Complex Urban Environments

Francesco De Luca

Faculty of Civil Engineering
Tallinn University of Technology, Estonia
e-mail: francesco.deluca@ttu.ee

Abstract: Planning requirements in terms of energy efficiency and daylighting strongly contribute to shaping the layout of cities. Direct solar access is the main requirement of the right to light in Estonia. Direct sunlight hours on building facades can be calculated by using environmental simulation software that also allows right-to-light analysis through the generation of the Solar Envelope. It is a method for calculating the maximum buildable volume that allows neighbors to receive the required amount of direct sunlight in a specific period of the year. The Solar Envelope can be determined on paper or more easily using simulations. The methods used by actual environmental software have significant limitations if used in complex urban environments. This paper discusses the potentialities of multi-objective optimization tools to generate Solar Envelopes for multiple facades with different orientations and specific amount of direct solar access requirements. The results show the superiority of the developed method that integrates parametric design, environmental simulations and multi-objective optimization, compared to existing methods.

Keywords: Urban Design, Direct Solar Access, Solar Envelope, Environmental Simulations, Multi-objective Optimization

DOI: 10.3311/CAADence.1657

INTRODUCTION

Natural light is one of the main factors affecting the physiological and psychological well-being of inhabitants of living environments. Natural light enters buildings in different ways: as direct solar radiation, diffused by the sky and the clouds, reflected by the surroundings. Direct solar radiation is considered to be the most valuable source of natural light in residential premises for its quantity, quality and distribution potentialities. The quantity is the necessary illumination needed to perform specific tasks with ease and comfort. The quality is the property characteristic of natural light to illuminate the interiors with the full spectrum of the visible portion of the electromagnetic radiation [1]. The distribution uniformity is guaranteed by a sufficient quantity of natural light and by proper interiors and windows layout that diffuse it first where it is more necessary [2]. Planning requirements, different from country to country, are set to guarantee sufficient natural lighting in residential premises.

The present work is based on the necessity to tackle specific problems encountered during a research conducted using computational and envi-
environmental tools to analyze the potentialities of in-fill of existing residential area located in the Soviet era quarter of Mustamäe in Tallinn (Lat. 59°26'N Lon. 24°45'E), Estonia. Direct solar access is regulated in Estonia by the standard “Daylight in dwellings and offices” [3]. The requirements state that new constructions cannot deprive the direct solar access of existing surroundings of more than 50% on a daily basis. The requirements concern the period from 22nd of April to 22nd of August. When designing the masses of new building that has to guarantee a required direct solar access on existing neighboring facades, the Solar Envelope method is an intuitive approach for the definition of the maximum volumes [4]. Differently than other regulations that use the setbacks method, the Solar Envelope is based on the characteristics of size, orientation and location of the building that will not cast shadows on the surroundings for a given timeframe and period of the year [5]. The calculations for the determination of the Solar Envelope can be done on paper using the data of the solar azimuth and elevation at the desired hours of the day and cut-off dates [6]. However, the calculation on paper is a long process and very imprecise for urban environments. Nowadays many CAD and parametric software that integrate environmental simulation tools include the possibility to calculate Solar Envelopes automatically [7, 8]. It is an easy procedure that requires few inputs, among which the main are: latitude of the area; boundaries of the neighboring buildings or baselines of the facades not to be shaded; boundary of the Solar Envelope; cut-off dates of the year and the desired start and end time of direct solar access that has to be guaranteed every day on the facades of the surrounding buildings. The result is a complex shape envelope that can be used as a volumetric limit to design one or more buildings with the desired layout, the mass of which does not have to exceed the Solar Envelope. A significant limitation of the above mentioned method to generate Solar Envelopes used by state-of-the-art simulation software is represented by the daily start and end time of the cut-off period to determine the required number of direct solar access hours. Although it works for a single façade without surroundings, it is not efficient if used in articulated urban environments where different facades need specific amounts of direct solar access. To guarantee the same right-to-light for different orientations’ facades it is necessary to consider different start and end time durations, one per façade, of the same cut-off period, or a method to generate the Solar Envelope based on the different actual quantities of direct solar access hours. Due to the complexity of the urban environment subject of the studies and the big difference of actual direct solar access hours on the different buildings’ facades (Figure 1), an alternative and more efficient method is developed. The author proposes a method to generate So-

Figure 1: Direct solar access hours simulation (min. values) for the main facades of the buildings in the whole area of study.
lar Envelopes that take into account multi-directional direct solar access requirements for complex urban environments. This method has been developed for the project of assessment of the potentialities of in-between construction in existing residential areas in Tallinn, integrating direct solar access hours calculations through computational environmental simulations, Solar Envelopes generation using parametric design and multi-objective optimization plug-in. The algorithm is designed using the visual programming tool Grasshopper for Rhinoceros 3D modeling software. The environmental simulations tool used for the calculation of the direct sun light hours in Grasshopper is Ladybug [9], based on the sun-path scripting function of Radiance, a validated lighting simulation tool [10]. The multi-objective optimization plug-in used is Octopus [11] that permits to apply evolutionary design principles in Grasshopper.

METHOD
The method described is applied to one group of four housing buildings of the whole study location. The four buildings of five floors of three meters each form an open boundary with an area in-between on which the Solar Envelope has to be calculated. The facades are oriented South, East, West and North-East. The area is 8 meters away from the buildings for fire security regulations. The buildings facades are divided in modules of 3x3 meters, each one with a window that in the simulation model is a node, i.e. a sensor for the computation of the direct sun light hours.

Actual Situation
First, the total direct solar access hours in the actual situation for the given period from 22nd April to 22nd August on the facades surrounding the area are determined through simulation of the sun-path and relative sun vectors. Second, after splitting the direct solar access hours for each of the 123 days of the analyzed period, the minimum, the maximum and the averages values are calculated for each façade/node/day. The minimum values are used in the development of the method because these are required by the standard (Figure 2). Since the Solar Envelope uses the baselines of the surrounding facades as the right-to-light start point and in a complex urban environment the lowest floors receive the least light, the minimum direct solar access hours values of the first floors nodes are used as the target. This guarantees that the least exposed portion of the façade also gets the necessary quantity of 50% of direct sunlight hours compared to the actual situation.

Having determined the minimum quantity of direct solar access hours on the first floor of each façade’s module in the actual situation, the values are reduced by 50%, which is the minimum required by the Estonian standard.

Figure 2: Direct solar access hours simulation (min. values) for the four facades surrounding the in-between area.
Existing Method

For comparison and evaluation of the proposed optimization method a Solar Envelope is generated with the existing method using two procedures. The required minimum number of hours previously calculated, is used to determine the different start and end time per façade in the cut-off period. Since the existing method requires only one time range, the time ranges of each facade are merged into one period. The baseline for calculation is one single contour for all the facades. The base of the Solar Envelope is the border of the area. The resulting Solar Envelope is a surface, defined by a three-dimensional grid of points, used to build the underlying volume of 18.115 m³ (Figure 3 left). This allows much more than the required 50% of minimum direct sun light hours on the surrounding facades, as exemplified by the deviation between the simulation with the Solar Envelope and the existing situation, done on the sample nodes on the first floor facades (Table 1). The second procedure is an advanced use of the existing method. It splits the generation of one single Solar Envelope into as many as the number of the surrounding facades and merges them in one resultant volume. For each façade its own time frame is used. The facades’ baselines are one line for each façade. The outputs are four three-dimensional grids of points, one for each Solar Envelope. Consequently the four grids are merged into one, selecting the corresponding points of the grid with the lowest Z coordinate through a selection algorithm. The lowest Z values guarantee that each facade node receives the minimum direct solar access required. The resultant grid of points is used to generate the top surface of the Solar Envelope with a volume of 45.995 m³ (Figure 3 right).

The resultant Solar Envelope is much larger than the one generated with the basic existing method. Nonetheless, the direct solar access hours on the surrounding facades are still significantly more than the target of 50%, as exemplified by the deviation of minimum direct sun light hours (Table 1). Therefore both the existing methods underestimate the buildable volume represented by the Solar Envelope.

Multi-objective Optimization Method

Due to the inadequacy of the existing method to generate Solar Envelope for complex urban environments and for different time ranges, a new method is developed that uses the actual amount of direct solar access hours on the facades and multi-objective optimization through the Octopus plug-in for Grasshopper. The evolutionary software looks for the best trade-offs between multiple fitness values (objectives), breeding multiple genes during a process of evolution through generations. It uses the Pareto principle that allocates optimal distribution of resources, in which one characteristic can be improved if another is degraded. This way, optimized solutions are generated. These present a range of trade-offs of the resources among which one can select the most efficient for the design task.

The developed method uses three objectives. The first derives from the Estonian standard described [3]. It is the deviation between the sun light hours obtained by simulation with each Solar Envelope and those required, which are 50% of the existing situation. The same cut-off period from 22nd of April to 22nd of August is used, but a start and end time per façade are not required. The objec-
Figure 4: The three dimensional grid of the multi-objective optimization method with the different objectives on the three axes: X the direct sunlight hours deviation, Y the volume of the Solar Envelope and Z the sum of the minimum direct sunlight hours. The items are the optimized solutions. A, B and C are the Pareto-front solution selected for the method evaluation.

The second objective is to maximize the volume of the Solar Envelope. The third objective is to maximize the sum of the minimum direct sunlight hours per facade/node/day calculated over the entire period on all the first floors nodes. These objectives have been selected because the scope is to find the biggest possible Solar Envelope shape that allows for the required minimum direct sunlight hours on the surrounding facades.

The Solar Envelope that the algorithm evaluates at each iteration of the multi-objective optimization solver is a Mesh built using the parameters of position and height of 9 points. These points are the four corners of the area, four points that can move along the edges and one point that can move in the two X and Y directions inside the area. The positions and heights of the points are the genes used by the evolutionary software.

The result of the evolution process after a number of generations is a three-dimensional grid of the optimized trade-off solutions, the fittest non-dominated Pareto-front, the elite ones and the last in the evolution history. The three axes of the grid represent each objective of the optimization: X the direct sunlight hours’ deviation, Y the volume of the Solar Envelope and Z the sum of the minimum direct sunlight hours. The fittest solutions are those closer to the origin of the grid and to each axis for every specific objective. For the evaluation of the method, three solutions are selected among the Pareto-front (A, B and C), with different objectives’ trade-off optimizations (Figure 4).

Solution A presents a direct sunlight hours’ deviation of 4, a maximum volume of 139.100 m³ and a total amount of minimum direct sunlight hours of 427. The corresponding values of solutions B and C are 6, 169.298 m³, 325 and 8, 202.725 m³, 267 respectively (Table 1). From the three-dimensional grid solutions’ items, the Solar Envelopes are re-instated in the 3D modeling software (Figure 5). All three Solar Envelopes selected present larger volumes compared to those generated with the existing methods (Table 1).
With the increasing volume size, the minimum direct sunlight hours’ deviation also increases (absolute values) and the sum of minimum direct sunlight hours decreases. The outcomes show that the Solar Envelope A is the most efficient. It presents the smallest deviation and is 7.6 and 3 times bigger than those generated with the existing methods (Table 1).

CONCLUSIONS

The simulation tools for generating Solar Envelopes available in the actual environmental design software have significant limitations when used in complex urban environments and for specific requirements of direct sunlight hours. The limitations result from the use of a start and end time for the days of the cut-off period. The Solar Envelope generated to evaluate the maximum buildable volume on a designated area is smaller than what is allowed. This way, its mass allows more than the required minimum number of hours of direct solar access on the neighboring facades but the possible buildable floor area in the plot is underestimated.

The method developed by the author using algorithmic parametric design and multi-objective optimization software has proven to be superior when compared with actual simulation tools. The advantage of this method is the possibility to use the actual amount of direct solar access hours for each façade of a complex urban environment. The improvement lies in not being bound to the start and end time used in the exiting methods that is a user input and not obtained by simulation. This way, the Solar Envelope is optimized for the shape, orientation, obstructions and specific direct sunlight hours requirements of each neighboring façade.

The utilization of the required amount of direct sunlight hours and the Solar Envelope volume as the multi-objective optimization software constitutes the big potentiality of the developed method. The three Solar Envelopes are more efficient because they permit a much larger buildable volume with small deviations of the values of the minimum direct sunlight hours required. Future work for the improvement of the method is the optimization of the objectives related to the direct sunlight requirements and the Solar Envelope volume, and to increase the number of control points of the Solar Envelope to generate a more accurate shape. This will eliminate the small discrepancy in the required direct sunlight hours, while still maintaining the possibility to generate maximized volume Solar Envelopes.

<table>
<thead>
<tr>
<th>Solar Envelope type</th>
<th>Existing method</th>
<th>Existing advanced method</th>
<th>Multi-objective optimization A</th>
<th>Multi-objective optimization B</th>
<th>Multi-objective optimization C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct sunlight hours’ deviation</td>
<td>21</td>
<td>18</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Volume of the Solar Envelope (m³)</td>
<td>18.115</td>
<td>45.995</td>
<td>139.100</td>
<td>169.298</td>
<td>202.725</td>
</tr>
<tr>
<td>Sum minimum direct sunlight hours</td>
<td>648</td>
<td>607</td>
<td>427</td>
<td>325</td>
<td>267</td>
</tr>
</tbody>
</table>

Table 1: Data comparison between the analyzed types of Solar Envelopes.
REFERENCES

Author’s index

Abbas, Günsu Merin .. 185
Balla-S. Béla, Szilvia .. 105
Bertin, Vito .. 79
Botzheim, Bálint .. 213
Bödő, Gábor .. 235
Castellon Gonzalez, Juan José 177
Chang, Tengwen .. 163
Chaszar, Andre ... 227
D’Acunto, Pierluigi .. 177
Datta, Sambit ... 163
De Luca, Francesco ... 195
De Paris, Sabine ... 55
Dino, İpek Gürsel .. 185
Dumitrescu, Delia ... 203
Elkady, Shawkat L. ... 169
Ezzat, Mohammed .. 111
Fehér, András ... 235
Fricker, Pia ... 119
Füzes, Bálint Péter .. 73
Gidófalvy, Kitti ... 213
Gyulai, Attila .. 67
Hadzijanisz, Konsztantinosz .. 235
Hegyi, Dezső ... 73
Heinrich, Benjamin ... 243
Iványi, Péter ... 221
Kari, Szabolcs ... 67
Kikunaga, Patricia Emy .. 213
Koenig, Reinhard .. 15
Kolarevic, Branko ... 27
Kulcke, Matthias .. 61
Lam, Wai Yin ... 79
Lellei, László ... 67
Lorenz, Wolfgang E. ... 249
Lovas, Réka .. 235
Lucchi, Elena ... 155
Matsubayashi, Michio ... 87
Nováková, Kateřina ... 133
Nuno Lacerda Lopes, Carlos .. 55
Pascucci, Michela ... 155
Pletenac, Lidija ... 141
Reffat M., Rabee ... 169
Reith, András ... 213
Riedel, Miklós Márton .. 67
Rossado Espinoza, Verónica Paola 127
Sajtos, István ... 149
Sárközi, Réka ... 221
Schmitt, Gerhard .. 15
Seddik, Moamen M .. 169
Selvær, Harald ... 99
Sik, András ... 67
Smolik, Andrei ... 163
Strommer, László .. 49
Sundfør, Ingolf ... 99
Surina, Dóra .. 235
Szabó, Beatrix ... 235
Széll, Attila Béla .. 221
Szilvási-Nagy, Márta ... 105
Szollár, András ... 213
Ther, Tamás ... 149
Vári, Barnabás ... 235
Watanabe, Shun .. 41, 87
Wurzer, Gabriel .. 243
Xu, Lei ... 93
Yajima, Kazumi ... 33
The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory.

Architects who keep up with the new designs demanded by the building industry will remain at the forefront of the design process in our information-technology based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process. We can get “back to command”.

The other message of our slogan is <Back to command>. In the expanding world of IT applications there is a need for the ready change of preliminary models by using parameters and scripts. These approaches retrieve the feeling of command-oriented systems, although, with much greater effectiveness.

Why CAADence in architecture?

"The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By definition, a cadence is a solo that precedes a closing formula, in which the soloist plays a series of personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuosic improvisation."