Why CAADence in architecture?

"The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuosic improvisation.”
CAADence in architecture
Back to command
Edited by Mihály Szoboszlai
Editor

Mihály Szoboszlai
Faculty of Architecture
Budapest University of Technology and Economics

2nd edition, July 2016

CAADence in Architecture – Proceedings of the International Conference on Computer Aided Architectural Design, Budapest, Hungary, 16th-17th June 2016. Edited by Mihály Szoboszlai, Department of Architectural Representation, Faculty of Architecture, Budapest University of Technology and Economics

Cover page: Faraway Design Kft.

Layout, typography: based on proceedings series of eCAADe conferences

DTP: Tamás Rumi

ISBN: 978-963-313-225-8
ISBN: 978-963-313-237-1 (online version)

CAADence in Architecture. Back to command
Budapesti Műszaki és Gazdaságtudományi Egyetem

Copyright © 2016

Publisher: Faculty of Architecture, Budapest University of Technology and Economics

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher.
CAADence in Architecture
Back to command

Proceedings of the International Conference on Computer Aided Architectural Design

16-17 June 2016
Budapest, Hungary
Faculty of Architecture
Budapest University of Technology and Economics

Edited by
Mihály Szoboszlai
The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory. Architects who keep up with the new design demanded by the building industry will remain at the forefront of the design process in our IT-based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process. We can get “back to command”.

Our slogan “Back to Command” contains another message. In the expanding world of IT applications, one must be able to change preliminary models readily by using different parameters and scripts. These approaches bring back the feeling of command-oriented systems, although with much greater effectiveness.

Why CAADence in architecture?
“The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By definition, a cadence is a solo that precedes a closing formula, in which the soloist plays a series of personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuosic improvisation.”

Nowadays sophisticated CAAD (Computer Aided Architectural Design) applications might operate in the hand of architects like instruments in the hand of musicians. We have used the word association cadence/caadence as a sort of word play to make this event even more memorable.

Mihály Szoboszlai
Chair of the Organizing Committee
Sponsors

GRAPHISOFT
ARCHICAD

AUTODESK

STUDIO IN-EX
ARCHITECTS & ENGINEERS

Építészeti Ábrázolás Tanszék
Department of Architectural Representation
Acknowledgement

We would like to express our sincere thanks to all of the authors, reviewers, session chairs, and plenary speakers. We also wish say thank you to the workshop organizers, who brought practice to theory closer together.

This conference was supported by our sponsors: GRAPHISOFT, AUTODESK, and STUDIO IN-EX. Additionally, the Faculty of Architecture at Budapest University of Technology and Economics provided support through its “Future Fund” (Jövő Alap), helping to bring internationally recognized speakers to this conference.

Members of our local organizing team have supported this event with their special contribution – namely, their hard work in preparing and managing this conference.

Mihály Szoboszlai
Chair of the Organizing Committee

Local conference staff
Ádám Tamás Kovács, Bodó Bánáti, Imre Batta, Bálint Csabay, Benedek Gászpor, Alexandra Göőz, Péter Kaknics, András Zsolt Kovács, Erzsébet Kőnigné Tóth, Bence Krajnyák, Levente Lajtos, Pál Ledneczki, Mark Searle, Béla Marsal, Albert Máté, Boldizsár Medvey, Johanna Pék, Gábor Rátonyi, László Strommer, Zsanett Takács, Péter Zsigmond
Workshop tutors

Algorithmic Design through BIM
 Erik Havadi
 Laura Baróthy

Working with BIM Analyses
 Balázs Molnár
 Máté Csócsics
 Zsolt Oláh

OPEN BIM
 Ákos Rechtorisz
 Tamás Erős

GDL in Daily Work
 Gergely Fehér
 Dominika Bobály
 Gergely Hári
 James Badcock
List of Reviewers

Abdelmohsen, Sherif - Egypt
Achten, Henri - Czech Republic
Agkathidis, Asterios - United Kingdom
Asanowicz, Aleksander - Poland
Bhatt, Anand - India
Braumann, Johannes - Austria
Celani, Gabriela - Brazil
Cerovsek, Tomo - Slovenia
Chaszar, Andre - Netherlands
Chronis, Angelos - Spain
Dokonal, Wolfgang - Austria
Estévez, Alberto T. - Spain
Fricker, Pia - Switzerland
Herr, Christiane M. - China
Hoffmann, Miklós - Hungary
Juhász, Imre - Hungary
Jutraz, Anja - Slovenia
Kieferle, Joachim B. - Germany
Klinc, Robert - Slovenia
Koch, Volker - Germany
Kolarevic, Branko - Canada
König, Reinhard - Switzerland
Krakhofer, Stefan - Hong Kong
van Leeuwen, Jos - Netherlands
Lomker, Thorsten - United Arab Emirates
Lorenz, Wolfgang - Austria
Loveridge, Russell - Switzerland
Mark, Earl - United States
Molnár, Emil - Hungary
Mueller, Volker - United States
Nourian, Pirouz - Netherlands
Oxman, Rivka - Israel
Parlac, Vera - Canada
Quintus, Alex - United Arab Emirates
Searle, Mark - Hungary
Szoboszlai, Mihály - Hungary
Tuncer, Bige - Singapore
Verbeke, Johan - Belgium
Vermillion, Joshua - United States
Watanabe, Shun - Japan
Wojtowicz, Jerzy - Poland
Wurzer, Gabriel - Austria
Yamu, Claudia - Netherlands
Contents

14 Keynote speakers

15 Keynote
15 Backcasting and a New Way of Command in Computational Design
 Reinhard Koenig, Gerhard Schmitt

27 Half Cadence: Towards Integrative Design
 Branko Kolarevic

33 Call from the industry leaders

33 Kajima’s BIM Theory & Methods
 Kazumi Yajima

41 Section A1 - Shape grammar

41 Minka, Machiya, and Gassho-Zukuri
 Procedural Generation of Japanese Traditional Houses
 Shun Watanabe

49 3D Shape Grammar of Polyhedral Spires
 László Strommer

55 Section A2 - Smart cities

55 Enhancing Housing Flexibility Through Collaboration
 Sabine Ritter De Paris, Carlos Nuno Lacerda Lopes

61 Connecting Online-Configurators (Including 3D Representations) with
 CAD-Systems
 Small Scale Solutions for SMEs in the Design-Product and Building Sector
 Matthias Kulcke

67 BIM to GIS and GIS to BIM
 Szabolcs Kari, László Lellei, Attila Gyulai, András Sik, Miklós Márton Riedel
73 **Section A3 - Modeling with scripting**

73 **Parametric Details of Membrane Constructions**
Bálint Péter Füzes, Dezső Hegyi

79 **De-Script-ion: Individuality / Uniformity**
Helen Lam Wai-yin, Vito Bertin

87 **Section B1 - BIM**

87 **Forecasting Time between Problems of Building Components by Using BIM**
Michio Matsubayashi, Shun Watanabe

93 **Integration of Facility Management System and Building Information Modeling**
Lei Xu

99 **BIM as a Transformer of Processes**
Ingolf Sundfør, Harald Selvær

105 **Section B2 - Smooth transition**

105 **Changing Tangent and Curvature Data of B-splines via Knot Manipulation**
Szilvia B.-S. Béla, Márta Szilvási-Nagy

111 **A General Theory for Finding the Lightest Manmade Structures Using Voronoi and Delaunay**
Mohammed Mustafa Ezzat

119 **Section B3 - Media supported teaching**

119 **Developing New Computational Methodologies for Data Integrated Design for Landscape Architecture**
Pia Fricker

127 **The Importance of Connectivism in Architectural Design Learning: Developing Creative Thinking**
Verónica Paola Rossado Espinoza

133 **Ambient PET(b)ar**
Kateřina Nováková

141 **Geometric Modelling and Reconstruction of Surfaces**
Lidija Pletenac
149 Section C1 - Collaborative design + Simulation

149 Horizontal Load Resistance of Ruined Walls Case Study of a Hungarian Castle with the Aid of Laser Scanning Technology
Tamás Ther, István Sajtos

155 2D-Hygrothermal Simulation of Historical Solid Walls
Michela Pascucci, Elena Lucchi

163 Responsive Interaction in Dynamic Envelopes with Mesh Tessellation
Sambit Datta, Smolik Andrei, Tengwen Chang

169 Identification of Required Processes and Data for Facilitating the Assessment of Resources Management Efficiency During Buildings Life Cycle
Moamen M. Seddik, Rabee M. Reffat, Shawkat L. Elkady

177 Section C2 - Generative Design -1

177 Stereotomic Models In Architecture A Generative Design Method to Integrate Spatial and Structural Parameters Through the Application of Subtractive Operations
Juan José Castellón González, Pierluigi D’Acunto

185 Visual Structuring for Generative Design Search Spaces
Günsu Merin Abbas, İpek Gürsel Dino

195 Section D2 - Generative Design - 2

195 Solar Envelope Optimization Method for Complex Urban Environments
Francesco De Luca

203 Time-based Matter: Suggesting New Formal Variables for Space Design
Delia Dumitrescu

213 Performance-oriented Design Assisted by a Parametric Toolkit - Case study
Bálint Botzheim, Kitti Gidófalvy, Patricia Emy Kikunaga, András Szollár, András Reith

221 Classification of Parametric Design Techniques
Types of Surface Patterns
Réka Sárközi, Péter Iványi, Attila Béla Széll
227 Section D1 - Visualization and communication

227 Issues of Control and Command in Digital Design and Architectural Computation
Andre Chaszar

235 Integrating Point Clouds to Support Architectural Visualization and Communication
Dóra Surina, Gábor Bődő, Konsztantinosz Hadzijanisz, Réka Lovas, Beatrix Szabó, Barnabás Vári, András Fehér

243 Towards the Measurement of Perceived Architectural Qualities
Benjamin Heinrich, Gabriel Wurzer

249 Complexity across scales in the work of Le Corbusier
Using box-counting as a method for analysing facades
Wolfgang E. Lorenz

256 Author’s index
Keynote speakers

REINHARD KÖNIG

Reinhard König studied architecture and urban planning. He completed his PhD thesis in 2009 at the University of Karlsruhe. Dr. König has worked as a research assistant and appointed Interim Professor of the Chair for Computer Science in Architecture at Bauhaus-University Weimar. He heads research projects on the complexity of urban systems and societies, the understanding of cities by means of agent based models and cellular automata as well as the development of evolutionary design methods. From 2013 Reinhard König works at the Chair of Information Architecture, ETH Zurich. In 2014 Dr. König was guest professor at the Technical University Munich. His current research interests are applicability of multi-criteria optimisation techniques for design problems and the development of computational analysis methods for spatial configurations. Results from these research activities are transferred into planning software of the company DecodingSpaces. From 2015 Dr. König heads the Junior-Professorship for Computational Architecture at Bauhaus-University Weimar, and acts as Co-PI at the Future Cities Lab in Singapore, where he focus on Cognitive Design Computing. Main research project: Planning Synthesis & Computational Planning Group see also the project description: Computational Planning Synthesis and his external research web site: Computational Planning Science

BRANKO KOLAREVIC

Branko Kolarevic is a Professor of Architecture at the University of Calgary Faculty of Environmental Design, where he also holds the Chair in Integrated Design and co-directs the Laboratory for Integrative Design (LID). He has taught architecture at several universities in North America and Asia and has lectured worldwide on the use of digital technologies in design and production. He has authored, edited or co-edited several books, including “Building Dynamics: Exploring Architecture of Change” (with Vera Parlac), “Manufacturing Material Effects” (with Kevin Klinger), “Performative Architecture” (with Ali Malkawi) and “Architecture in the Digital Age.” He is a past president of the Association for Computer Aided Design in Architecture (ACADIA), past president of the Canadian Architectural Certification Board (CACB), and was recently elected future president of the Association of Collegiate Schools of Architecture (ACSA). He is a recipient of the ACADIA Award for Innovative Research in 2007 and ACADIA Society Award of Excellence in 2015. He holds doctoral and master’s degrees in design from Harvard University and a diploma engineer in architecture degree from the University of Belgrade.
Integration of Facility Management System and Building Information Modeling

Lei Xu¹
¹Department of Architecture
Tohoku Institute of Technology, Japan
e-mail: xulei@tohtech.ac.jp

Abstract: Based on the investigation of administration of apartment building in Japan, a database for facility management, including the information of inspection schedule and maintenance frequency, are proposed in XML. The building information, including the IfcSystem data is created by ArchiCAD MEP Modeler. According to the IFC2x3 TC1, the IfcDistributionElement has an inverse attribute for boundaries defined by IfcRelSpaceBoundary. But the boundary information is undefined in most cases. By analyzing the geometric representation of IfcSpace and IfcFlowMovingDevice, the relationship between IfcFlowMovingDevice (for fun) and IfcSpace is added. By using IFCsvr ActiveX Component, a facility management tool iFM is developed. The equipment information is integrated into the building information in a tree-view. Furthermore, the facility management information of equipment devices can be listed quickly by the link of IFC data and the XML FM database, which is helpful for doing equipment maintenance plan and building administration.

Keywords: Facility Management, IFC, Database, Equipment Device, Apartment Building

DOI: 10.3311/CAADence.1650

INTRODUCTION
The life cycle of buildings in Japan is about 40 to 50 years, while the equipment service life span is only about 15 years. Therefore, an equipment in a building needs to be replaced 2 to 3 times during the whole building life cycle, which means there are a lot of maintenance and repair during the facility management period. In houses, the residents have little knowledge about MEP inspection and maintenance. In this article, a database for facility management, including the information of inspection schedule and maintenance frequency, are proposed in XML, based on the investigation of administration of apartment building in Japan. And a facility management tool iFM is proposed, integrated with the IFC data and the proposed database. iFM tool can not only view the details of the building information in a tree-view, but also create the management information of equipment devices, which will be helpful for doing equipment maintenance plan and building administration.

LITERATURE SURVEY
In Japan, Tokyo Building Maintenance Association (TBMA) is a professional association in charge of the development of building maintenance technology and the promotion of the knowledge con-
Urban Renaissance (UR) Agency is an independent administrative institute not only managing the land development and urban development but also providing about 750,000 rental apartment with 2 million residents in the whole country. It has its own facility management manuals for its rental housing. The other administration agencies like Hokkaido Building Guidance Center (HBGC) also publish guides for facility management in houses.

According to the books and manuals published by TBMA, UR and HBGC [1, 2, 3], the items and contents of facility management, especially on MEP inspection are studied. In most documents, inspection items, method, inspection cycle, maintenance cycle, and expected service life are detailed.

PERSONAL INTERVIEW SURVEY

As to the status quo of the administration in residential houses, a personal interview survey was conducted in a 10-story mansion in Tagajo, Miyagi. The mansion administrator carries out his daily patrol of the common parts, such as staircases, elevator halls, roof top and lobbies, as well as the inspection of services and facilities, such as water pumpers, ventilation fans and fire extinguishers. He also writes the report for the patrol and surveillance. Examples of the job sheet are shown in Table 1. The administrator observes the defects in buildings, records the symptoms or phenomena, and also do some simple maintenance works, such as light alternation, and filter cleaning. As to the serious defects, such as pump failure, elevator noise, he will call the relevant service contractor to do the repairing. Finally, the maintenance result, together with repair cost, will be recorded according to the report from the contractor.

The administrator does his patrol from the outside to the inside, from the lower story to the higher, and from one room to another. Therefore, the information of system/facility name and location becomes important.
DATABASE FOR FACILITY MANAGEMENT

According to the results from literature survey and personal interview, the items of the FM database are extracted as shown in Figure 1. The database is in XML format, with the primary key of System/Facility Name, by which the other information about FM will be found.

IFC DATA FOR MEP SYSTEMS

The building information, including the IFC data for MEP systems is created by ArchiCAD and its MEP Modeler [4]. Using the IFC Manager, the IFC System is created for MEP systems. For example, a fan, ducts and a ventilation vent can be grouped into a ventilation system.

In the design phase of one project, MEP systems are often separated by the space information. The connection between MEP systems and spaces is not so clearly defined. But during the facility management period, the space information is important. For example, the building administrators inspect the rooms one by one, and they also record the inspection results together with the room name. Therefore, MEP systems, especially the equipment which can be found in the rooms, need space boundary information.

According to IFC2x3 TC1 [5], an MEP element, such as a fan, can be expressed as an IfcDistributionElement Entity having an inverse attribute for boundaries (ProvidesBoundaries) defined by IfcRelSpaceBoundary, shown in Figure 2 [6]. Although the boundary information is undefined in most cases, by analyzing the geometric representation of the IfcSpace entity standing for a room and the IfcFlowMovingDevice entity standing for a fan, the boundary relationship between IfcFlowMovingDevice and IfcSpace can be added. If the lowest horizontal level of a fan (IfcFlowMovingDevice) is contained in a room (IfcSpace), then a boundary relationship can be defined between this fan and the room. Therefore, the fan can be linked with the room, and the boundary relationship attribute is added in the iFM tool proposed in this article.

![Figure 2: Inheritance graph of IfcDistributionElement](image)
IFC DATA FOR A MODEL APARTMENT BUILDING

Case study is carried out in a two-story apartment building with the floor area of 76.8m², shown in Figure 3. Only the equipment in the toilet is studied. The ventilation system shown in Figure 4 consists of a fan (IfcFlowMovingDevice), a duct (IfcFlowSegment) and an outside vent (IfcBuildingElementProxy).

By the IFC manager, a new system (IfcSystem) can be created. The three entities of the ventilation system (fan, vent and duct), as well as the toilet (space) will be grouped by dragging and pulling them into the newly created IfcSystem. And the result can be confirmed in Figure 5.

Figure 3: A two-storey apartment building

Figure 4: Ventilation system in Toilet

Figure 5: MEP data confirmed by IFCExplorer
PROPOSITION OF IFM

Using the IFCsvr ActiveX Component released by SECOM CO., LTD., iFM is developed for facility management in houses and its interface is shown in Figure 6.
Choosing the File tab control and clicking the Open button, an ifc file will be opened and the building information can be shown in the right window.
Choosing the FM tab control and clicking the Treeview button, the facility management information can be shown in the right window (Figure 7).

CONCLUSION

Facility management contributes a large part of the life cycle cost in one building. According to the investigation of administration of apartment building in Japan, a database for facility management, are proposed in XML, including the information of inspection schedule and maintenance frequency. In this article MEP systems are drawn by ArchiCAD and its MEP modeler. Using the IFC Manager, an IfcSystem entity is created, which combines the different elements of one MEP system into a group. A facility management tool iFM is developed, which can integrate the IFC data with the XML facility management database. The equipment information, as well as the building information, is organized in a tree-view with the key item of space (room). Moreover, the facility management information of equipment devices can be listed in a tree-view by the link of IFC data and the XML FM database, which will be helpful for doing equipment maintenance plan and building administration.
Although IFC manager can combine the different elements into an IfcSystem group, it takes time to pick up the elements, and an easier grouping method is expected.
While the facility management information is gathered easily by iFM, the interface should be improved for the long-term preventive maintenance plan. In order to update and expand the facility management database, the personal interview survey of administration of apartment building will be continued and the needs for BIM application will also be investigated. With the popularity
of mobile devices, such as Surface, and iPad, the camera capture function is also expected, which will help the building administrators record their inspection results on site.

REFERENCES

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbas, Günsu Merin</td>
<td>185</td>
</tr>
<tr>
<td>Balla-S. Béla, Szilvia</td>
<td>105</td>
</tr>
<tr>
<td>Bertin, Vito</td>
<td>79</td>
</tr>
<tr>
<td>Botzheim, Bálint</td>
<td>213</td>
</tr>
<tr>
<td>Bödő, Gábor</td>
<td>235</td>
</tr>
<tr>
<td>Castellon Gonzalez, Juan José</td>
<td>177</td>
</tr>
<tr>
<td>Chang, Tengwen</td>
<td>163</td>
</tr>
<tr>
<td>Chaszar, Andre</td>
<td>227</td>
</tr>
<tr>
<td>D’Acunto, Pierluigi</td>
<td>177</td>
</tr>
<tr>
<td>Datta, Sambit</td>
<td>163</td>
</tr>
<tr>
<td>De Luca, Francesco</td>
<td>195</td>
</tr>
<tr>
<td>De Paris, Sabine</td>
<td>55</td>
</tr>
<tr>
<td>Dino, Ipek Gürsel</td>
<td>185</td>
</tr>
<tr>
<td>Dumitrescu, Delia</td>
<td>203</td>
</tr>
<tr>
<td>Elkady, Shawkat L.</td>
<td>169</td>
</tr>
<tr>
<td>Ezzat, Mohammed</td>
<td>111</td>
</tr>
<tr>
<td>Fehér, András</td>
<td>235</td>
</tr>
<tr>
<td>Fricker, Pia</td>
<td>119</td>
</tr>
<tr>
<td>Füzes, Bálint Péter</td>
<td>73</td>
</tr>
<tr>
<td>Gidófalvy, Kitti</td>
<td>213</td>
</tr>
<tr>
<td>Gyulai, Attila</td>
<td>67</td>
</tr>
<tr>
<td>Hadzijianisz, Konsztantinosz</td>
<td>235</td>
</tr>
<tr>
<td>Hegyi, Dezső</td>
<td>73</td>
</tr>
<tr>
<td>Heinrich, Benjamin</td>
<td>243</td>
</tr>
<tr>
<td>Iványi, Péter</td>
<td>221</td>
</tr>
<tr>
<td>Kari, Szabolcs</td>
<td>67</td>
</tr>
<tr>
<td>Kikunaga, Patricia Emy</td>
<td>213</td>
</tr>
<tr>
<td>Koenig, Reinhard</td>
<td>15</td>
</tr>
<tr>
<td>Kolarevic, Branko</td>
<td>27</td>
</tr>
<tr>
<td>Kulcke, Matthias</td>
<td>61</td>
</tr>
<tr>
<td>Lam, Wai Yin</td>
<td>79</td>
</tr>
<tr>
<td>Lellei, László</td>
<td>67</td>
</tr>
<tr>
<td>Lorenz, Wolfgang E.</td>
<td>249</td>
</tr>
<tr>
<td>Lovas, Réka</td>
<td>235</td>
</tr>
<tr>
<td>Lucchi, Elena</td>
<td>155</td>
</tr>
<tr>
<td>Matsubayashi, Michio</td>
<td>87</td>
</tr>
<tr>
<td>Nováková, Kateřina</td>
<td>133</td>
</tr>
<tr>
<td>Nuno Lacerda Lopes, Carlos</td>
<td>55</td>
</tr>
<tr>
<td>Pascucci, Michela</td>
<td>155</td>
</tr>
<tr>
<td>Pletenac, Lidiya</td>
<td>141</td>
</tr>
<tr>
<td>Reffat M., Rabee</td>
<td>169</td>
</tr>
<tr>
<td>Reith, András</td>
<td>213</td>
</tr>
<tr>
<td>Riedel, Miklós Márton</td>
<td>67</td>
</tr>
<tr>
<td>Rossado Espinoza, Verónica Paola</td>
<td>127</td>
</tr>
<tr>
<td>Sajtos, István</td>
<td>149</td>
</tr>
<tr>
<td>Sárközi, Réka</td>
<td>221</td>
</tr>
<tr>
<td>Schmitt, Gerhard</td>
<td>15</td>
</tr>
<tr>
<td>Seddik, Moamen M.</td>
<td>169</td>
</tr>
<tr>
<td>Selvær, Harald</td>
<td>99</td>
</tr>
<tr>
<td>Sik, András</td>
<td>67</td>
</tr>
<tr>
<td>Smolik, Andrei</td>
<td>163</td>
</tr>
<tr>
<td>Strommer, László</td>
<td>49</td>
</tr>
<tr>
<td>Sundfør, Ingolf</td>
<td>99</td>
</tr>
<tr>
<td>Surina, Dóra</td>
<td>235</td>
</tr>
<tr>
<td>Szabó, Beatrix</td>
<td>235</td>
</tr>
<tr>
<td>Széll, Attila Béla</td>
<td>221</td>
</tr>
<tr>
<td>Szilvási-Nagy, Márta</td>
<td>105</td>
</tr>
<tr>
<td>Szollár, András</td>
<td>213</td>
</tr>
<tr>
<td>Ther, Tamás</td>
<td>149</td>
</tr>
<tr>
<td>Vári, Barnabás</td>
<td>235</td>
</tr>
<tr>
<td>Watanabe, Shun</td>
<td>41, 87</td>
</tr>
<tr>
<td>Wurzer, Gabriel</td>
<td>243</td>
</tr>
<tr>
<td>Xu, Lei</td>
<td>93</td>
</tr>
<tr>
<td>Yajima, Kazumi</td>
<td>33</td>
</tr>
</tbody>
</table>
The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory.

Architects who keep up with the new designs demanded by the building industry will remain at the forefront of the design process in our information-technology based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process. We can get “back to command”.

The other message of our slogan is <Back to command>.

In the expanding world of IT applications there is a need for the ready change of preliminary models by using parameters and scripts. These approaches retrieve the feeling of command-oriented systems, although, with much greater effectiveness.

Why CAADence in architecture?

"The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By definition, a cadence is a solo that precedes a closing formula, in which the soloist plays a series of personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuosic improvisation."