The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory.

Architects who keep up with the new designs demanded by the building industry will remain at the forefront of the design process in our information-technology based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process. We can get “back to command”.

The other message of our slogan is “Back to command”.

In the expanding world of IT applications there is a need for the ready change of preliminary models by using parameters and scripts. These approaches retrieve the feeling of command-oriented systems,

Why CAADence in architecture?

“The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By

personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuosic improvisation.”
Back to command
Edited by Mihály Szoboszlai
CAADence in Architecture
Back to command

Proceedings of the International Conference on Computer Aided Architectural Design

16-17 June 2016
Budapest, Hungary
Faculty of Architecture
Budapest University of Technology and Economics

Edited by
Mihály Szoboszlai
The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory. Architects who keep up with the new design demanded by the building industry will remain at the forefront of the design process in our IT-based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process. We can get “back to command”.

Our slogan “Back to Command” contains another message. In the expanding world of IT applications, one must be able to change preliminary models readily by using different parameters and scripts. These approaches bring back the feeling of command-oriented systems, although with much greater effectiveness.

Why CAADence in architecture?

“The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By definition, a cadence is a solo that precedes a closing formula, in which the soloist plays a series of personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuosic improvisation.”

Nowadays sophisticated CAAD (Computer Aided Architectural Design) applications might operate in the hand of architects like instruments in the hand of musicians. We have used the word association cadence/caadence as a sort of word play to make this event even more memorable.
Sponsors

GRAPHISOFT
ARCHICAD

AUTODESK

STUDIO IN-EX
ARCHITECTS & ENGINEERS

MÜEGYETEM 1782

Építészeti Ábrázolás Tanszék
Department of Architectural Representation
Acknowledgement

We would like to express our sincere thanks to all of the authors, reviewers, session chairs, and plenary speakers. We also wish to say thank you to the workshop organizers, who brought practice to theory closer together.
This conference was supported by our sponsors: GRAPHISOFT, AUTODESK, and STUDIO IN-EX. Additionally, the Faculty of Architecture at Budapest University of Technology and Economics provided support through its “Future Fund” (Jövő Alap), helping to bring internationally recognized speakers to this conference.
Members of our local organizing team have supported this event with their special contribution – namely, their hard work in preparing and managing this conference.

Mihály Szoboszlai
Chair of the Organizing Committee

Local conference staff
Ádám Tamás Kovács, Bodó Bánáti, Imre Batta, Bálint Csabay, Benedek Gáspor, Alexandra Göőz, Péter Kaknics, András Zsolt Kovács, Erzsébet Kőnigné Tóth, Bence Krajnyák, Levente Lajtos, Pál Ledneczki, Mark Searle, Béla Marsal, Albert Máté, Boldizsár Medvey, Johanna Pék, Gábor Rátonyi, László Strommer, Zsanett Takács, Péter Zsigmond
Workshop tutors

Algorithmic Design through BIM

Erik Havadi
Laura Baróthy

Working with BIM Analyses

Balázs Molnár
Máté Csócsics
Zsolt Oláh

OPEN BIM

Ákos Rechtorisz
Tamás Erős

GDL in Daily Work

Gergely Fehér
Dominika Bobály
Gergely Hári
James Badcock
List of Reviewers

Abdelmohsen, Sherif - Egypt
Achten, Henri - Czech Republic
Agkathidis, Asterios - United Kingdom
Asanowicz, Aleksander - Poland
Bhatt, Anand - India
Braumann, Johannes - Austria
Celani, Gabriela - Brazil
Cerovsek, Tomo - Slovenia
Chaszar, Andre - Netherlands
Chronis, Angelos - Spain
Dokonal, Wolfgang - Austria
Estévez, Alberto T. - Spain
Fricker, Pia - Switzerland
Herr, Christiane M. - China
Hoffmann, Miklós - Hungary
Juhász, Imre - Hungary
Jutraz, Anja - Slovenia
Kieferle, Joachim B. - Germany
Klinc, Robert - Slovenia
Koch, Volker - Germany
Kolarevic, Branko - Canada
König, Reinhard - Switzerland

Krakhofer, Stefan - Hong Kong
van Leeuwen, Jos - Netherlands
Lomker, Thorsten - United Arab Emirates
Lorenz, Wolfgang - Austria
Loveridge, Russell - Switzerland
Mark, Earl - United States
Molnár, Emil - Hungary
Mueller, Volker - United States
Nourian, Pirouz - Netherlands
Oxman, Rivka - Israel
Parlac, Vera - Canada
Quintus, Alex - United Arab Emirates
Searle, Mark - Hungary
Szoboszlai, Mihály - Hungary
Tuncer, Bige - Singapore
Verbeke, Johan - Belgium
Vermillion, Joshua - United States
Watanabe, Shun - Japan
Wojtowicz, Jerzy - Poland
Wurzer, Gabriel - Austria
Yamu, Claudia - Netherlands
Contents

14 Keynote speakers

15 Keynote
15 Backcasting and a New Way of Command in Computational Design
 Reinhard Koenig, Gerhard Schmitt
27 Half Cadence: Towards Integrative Design
 Branko Kolarevic

33 Call from the industry leaders
33 Kajima’s BIM Theory & Methods
 Kazumi Yajima

41 Section A1 - Shape grammar
41 Minka, Machiya, and Gassho-Zukuri
 Procedural Generation of Japanese Traditional Houses
 Shun Watanabe
49 3D Shape Grammar of Polyhedral Spires
 László Strommer

55 Section A2 - Smart cities
55 Enhancing Housing Flexibility Through Collaboration
 Sabine Ritter De Paris, Carlos Nuno Lacerda Lopes
61 Connecting Online-Configurators (Including 3D Representations) with
 CAD-Systems
 Small Scale Solutions for SMEs in the Design-Product and Building Sector
 Matthias Kulcke
67 BIM to GIS and GIS to BIM
 Szabolcs Kari, László Lellei, Attila Gyulai, András Sik, Miklós Márton Riedel
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>Section A3 - Modeling with scripting</td>
<td>Parametric Details of Membrane Constructions</td>
<td>Bálint Péter Füzes, Dezső Hegyi</td>
</tr>
<tr>
<td>79</td>
<td>De-Script-ion: Individuality / Uniformity</td>
<td>Helen Lam Wai-yin, Vito Bertin</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Section B1 - BIM</td>
<td>Forecasting Time between Problems of Building Components by Using BIM</td>
<td>Michio Matsubayashi, Shun Watanabe</td>
</tr>
<tr>
<td>93</td>
<td>Integration of Facility Management System and Building Information Modeling</td>
<td>Lei Xu</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>BIM as a Transformer of Processes</td>
<td>Ingolf Sundfør, Harald Selvær</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Section B2 - Smooth transition</td>
<td>Changing Tangent and Curvature Data of B-splines via Knot Manipulation</td>
<td>Szilvia B.-S. Béla, Márta Szilvási-Nagy</td>
</tr>
<tr>
<td>111</td>
<td>A General Theory for Finding the Lightest Manmade Structures Using Voronoi and Delaunay</td>
<td>Mohammed Mustafa Ezzat</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Section B3 - Media supported teaching</td>
<td>Developing New Computational Methodologies for Data Integrated Design for Landscape Architecture</td>
<td>Pia Fricker</td>
</tr>
<tr>
<td>127</td>
<td>The Importance of Connectivism in Architectural Design Learning: Developing Creative Thinking</td>
<td>Verónica Paola Rossado Espinoza</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Ambient PET(b)ar</td>
<td>Kateřina Nováková</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>Geometric Modelling and Reconstruction of Surfaces</td>
<td>Lidija Pletenac</td>
<td></td>
</tr>
</tbody>
</table>
149 Section C1 - Collaborative design + Simulation

149 Horizontal Load Resistance of Ruined Walls Case Study of a Hungarian Castle with the Aid of Laser Scanning Technology
Tamás Ther, István Sajtos

155 2D-Hygrothermal Simulation of Historical Solid Walls
Michela Pascucci, Elena Lucchi

163 Responsive Interaction in Dynamic Envelopes with Mesh Tessellation
Sambit Datta, Smolik Andrei, Tengwen Chang

169 Identification of Required Processes and Data for Facilitating the Assessment of Resources Management Efficiency During Buildings Life Cycle
Moamen M. Seddik, Rabee M. Reffat, Shawkat L. Elkady

177 Section C2 - Generative Design -1

177 Stereotomic Models In Architecture A Generative Design Method to Integrate Spatial and Structural Parameters Through the Application of Subtractive Operations
Juan José Castellón González, Pierluigi D’Acunto

185 Visual Structuring for Generative Design Search Spaces
Günsu Merin Abbas, İpek Gürsel Dino

195 Section D2 - Generative Design - 2

195 Solar Envelope Optimization Method for Complex Urban Environments
Francesco De Luca

203 Time-based Matter: Suggesting New Formal Variables for Space Design
Delia Dumitrescu

213 Performance-oriented Design Assisted by a Parametric Toolkit - Case study
Bálint Botzheim, Kitti Gidófalvy, Patricia Emy Kikunaga, András Szollár, András Reith

221 Classification of Parametric Design Techniques Types of Surface Patterns
Réka Sárközi, Péter Iványi, Attila Béla Széll
Section D1 - Visualization and communication

Issues of Control and Command in Digital Design and Architectural Computation
Andre Chaszar

Integrating Point Clouds to Support Architectural Visualization and Communication
Dóra Surina, Gábor Bödő, Konsztantinosz Hadzijanisz, Réka Lovas, Beatrix Szabó, Barnabás Vári, András Fehér

Towards the Measurement of Perceived Architectural Qualities
Benjamin Heinrich, Gabriel Wurzer

Complexity across scales in the work of Le Corbusier
Using box-counting as a method for analysing facades
Wolfgang E. Lorenz

Author’s index
Keynote speakers

REINHARD KÖNIG

Reinhard König studied architecture and urban planning. He completed his PhD thesis in 2009 at the University of Karlsruhe. Dr. König has worked as a research assistant and appointed Interim Professor of the Chair for Computer Science in Architecture at Bauhaus-University Weimar. He heads research projects on the complexity of urban systems and societies, the understanding of cities by means of agent based models and cellular automata as well as the development of evolutionary design methods. From 2013 Reinhard König works at the Chair of Information Architecture, ETH Zurich. In 2014 Dr. König was guest professor at the Technical University Munich. His current research interests are applicability of multi-criteria optimisation techniques for design problems and the development of computational analysis methods for spatial configurations. Results from these research activities are transferred into planning software of the company DecodingSpaces. From 2015 Dr. König heads the Junior-Professorship for Computational Architecture at Bauhaus-University Weimar, and acts as Co-PI at the Future Cities Lab in Singapore, where he focus on Cognitive Design Computing. Main research project: Planning Synthesis & Computational Planning Group see also the project description: Computational Planning Synthesis and his external research web site: Computational Planning Science

BRANKO KOLAREVIC

Branko Kolarevic is a Professor of Architecture at the University of Calgary Faculty of Environmental Design, where he also holds the Chair in Integrated Design and co-directs the Laboratory for Integrative Design (LID). He has taught architecture at several universities in North America and Asia and has lectured worldwide on the use of digital technologies in design and production. He has authored, edited or co-edited several books, including “Building Dynamics: Exploring Architecture of Change” (with Vera Parlac), “Manufacturing Material Effects” (with Kevin Klinger), “Performative Architecture” (with Ali Malkawi) and “Architecture in the Digital Age.” He is a past president of the Association for Computer Aided Design in Architecture (ACADIA), past president of the Canadian Architectural Certification Board (CACB), and was recently elected future president of the Association of Collegiate Schools of Architecture (ACSA). He is a recipient of the ACADIA Award for Innovative Research in 2007 and ACADIA Society Award of Excellence in 2015. He holds doctoral and master’s degrees in design from Harvard University and a diploma engineer in architecture degree from the University of Belgrade.
2D-Hygrothermal Simulation of Historical Solid Walls

Michela Pascucci¹, Elena Lucchi²
¹La Sapienza Università di Roma
²Eurac Research, Bolzano – Politecnico di Milano, Italy
e-mail: michela.pascucci@uniroma1.it, elena.lucchi@eurac.edu

Abstract: The analysis and the knowledge of the historical building masonries are key elements in preserving and enhancing their heritage value in a conscious way. The paper aims at simulating the hygrothermal behaviour of several traditional masonry structures, using a dynamic simulation program (Delphin 5.8.3) for coupling heat, moisture, and matter transport in porous building materials. Traditional walls have different geometries, characteristics, construction techniques, and materials. The most important difficulties in the simulation concern: (i) graphic simplification of complex structures, (ii) definition of the boundary conditions; (iii) layout discretization; and (iv) selection of the materials from the existing databases. In addition, the influence of wall orientation, climate data, and boundary conditions is relevant for the results. The focus of this paper is the comparison between the hygrothermal simulations and the in situ heat flow meter measurements of some traditional Italian solid walls. In this way, we can understand the influence of different assumptions, parameters, and simplifications on the virtual models.

Keywords: graphic simplification, hygrothermal simulation, historical masonry.

DOI: 10.3311/CAADence.1640

INTRODUCTION

Each historical period produced a specific architecture that represents a unique experience for the human history, showing a symbol of different cultural evolutions. It follows well-defined and differentiated characteristics, according to the territory, the local resources, the cultural values, the economic opportunities, and the skills of workers. Each building is “un unicum” that should be known and analysed, in order to preserve and to update properly its cultural features and appearances. Although common elements have been found in structures from the same geographical areas or historical periods, normally there are many differences related to construction techniques, selection, and processing of materials. For this reason, the widespread knowledge of history, dimensions, structures, shapes, building techniques, materials, environmental behaviours, energy concepts, and conservation state, management procedures is a necessary starting point to work properly on cultural heritage. The deep knowledge of distinctive characteristics and complexities of a historic building needs a systematic approach from general to particular. The work on historical buildings requires an accurate identification of thermal properties, damage problems, moisture contents, local and seasonal environmental conditions, and so on. This information can be challenging, particularly for historical masonries, due to the
presence of several materials, layers, and thickness variability across the wall. In this context, the hygrothermal simulation of historical walls can be a valid tool for supporting a conscious design. Nowadays, several hygrothermal simulation software are available, such as Wufi (Fraunhofer Institute for Building Physics) and Delphin (Dresden University of Technology). Nevertheless, the estimation of the thermal performances of the historical envelope encounters the difficulties of non-availability of appropriate criteria, parameters and tools for hygrothermal and energy simulations. For this reason, the assessment of these instruments and their comparison with the experimental measurements, particularly for historical building could help architects and engineers in understanding their thermal performance and solving specific problems.

AIMS AND METHODOLOGY

The paper aims at understanding the influence of different geometrical simplifications, discretization, and material selections on the thermal performances of traditions stone walls. Furthermore, for verifying the reliability of the simulated results, the hygrothermal simulations have been compared with the in situ heat flow meter measurements. The assessment of the hygrothermal behaviour of historical walls is somehow still unresolved because of the attempt to use the same evaluation methods and criteria used for modern constructions and the limited knowledge of historical construction techniques that are far different from the modern ones. The methods normally used for assessing the hygrothermal performance of the building components are: (i) tabulated thermal values from standards, literature or software libraries; (ii) performance calculation using standard proprieties of the materials; and (iii) in situ heat flow meter (HFM) measurement. The first one is considered not adequate for historic masonries, due to the complexity and the variety of traditional materials and structures compared to standard simplifications [1 & 5]. Therefore, the paper aims at comparing the hygrothermal behaviours obtained by the simulation and the HFM measurements, using the same climate and boundary conditions. The work is structured in the following phases:

- Selection and analysis of a traditional Italian masonries widely used in historical buildings;
- In situ HFM measurement of the thermal conductivity of the wall;
- 2-D (dimensionally) hygrothermal simulation of the wall obtained using the software Delphin 5.8.3 with different geometrical simplifications, discretization, and material properties;
- Comparison between measured and simulated results

Case-study

The case study is the Public Weigh House, a building of Romanesque origins located in the city center of Bolzano (Italy). Here, we select a traditional stonework from the Renaissance period. It presents a complex pattern composed by irregular ashlar and a nucleus formed by raw and mixed materials, such as igneous rocks, mortar, bricks, and woods. It is covered in most parts on both sides with historic lime plaster, partially with wall

Figure 1: The historical research and the diagnostic analyses conducted in the case study
paintings and frescoes. The wall section has a thickness of about 62 cm. The historical research, the petrographic studies, and the diagnostic campaigns (made by different techniques as IR-thermography and coring) allow to do accurate hypotheses about the structural morphology. We considered: (i) age of the masonry; (ii) technical construction; (iii) type of stone; and (iv) physical characteristics and hygrothermal proprieties of the materials used. In this way, we collect enough data to suppose the shape and the dimensions of the stone elements and to theorize the manufacture of the nucleus.

HFM Measurement

The HFM measurement is a None Destructive Testing (NDT) that permits to determine the thermal transmission properties of the opaque envelope directly in situ. The apparatus (Ahlborn Almemo 2590-3S) is composed by a data-logger equipped with two temperature sensors (transducers) and one heat flux plate for measuring and registering the internal and external temperature and the heat flows through the walls. In addition, an adjunctive ambient temperature sensor has been used to verify the stability of the air temperature. The measurement has been carried out according to the International standard [4] on the north-facing walls and on a representative part of the whole element, to avoid the influence of the environment (e.g. sun, wind, rain, snow, localized eat sources), and the singularities (e.g. thermal bridges, different thicknesses, internal humidity, or damage). In addition, inner and outer surfaces have been protected from the variability of the boundary conditions (e.g. systems, people, direct solar radiation, and so on). To check the uniformity of the measurement area, the location of the HFM apparatus has been investigated by the IR-thermography [2]. The sensors have been located about half-way between window and corner, and floor and ceiling. The monitoring period has been chosen to provide a stable thermal resistance (R-value) that takes into account the inertia of the walls [1]. The standard procedure [4] requires a sampling duration of an integer multiple of 24 h and at least 72 consecutive hours, dependent on the characteristics of the building component and the temperature variation. In this case, the test has been conducted continuously for 4 days (96 hours) with a climatic stability, to improve the reliability of the results on the high thickness wall. The data has been processed with the “average method”, a simplified approach based on the fundamental equations of the heat transfer.

2-D simulations

The numerical simulation program Delphin 5.8.3 uses the model of coupled heat, humidity, and air transport in capillary porous building materials. The simulation of complex walls, as the historical ones with inhomogeneous material and non-standardized layouts, must be made with 2-D models. The program package consists of a user interface (data input), a solver (calculation module), and a post-processing tool for visualizing the results. The program contains several databases with climatic data, air, and material proprieties (measured directly in the laboratory). The graphic output is based on 2-D coloured image and contour plots, location and time cuts, and the post processing or further processing of the data. Physical units, axis scales, and any choice of display section are integrated. The software has very rigid options to define the graphical model that always not correspond to the real wall structure (e.g. regular geometries and shapes, orthoclastic, absence of splines, homogeneity of the material, and so on). Therefore, the simplification of the historical layout is the most important problem for modelling correctly its hygrothermal behaviour.

Discussion

The work concerns the geometric simplification of a complex masonry composed by irregular ashlar and a nucleus formed from raw and mixed materials. The first step concerns the geometric simplification of the wall, using the software AutoCAD 2014. It permits to define different wall layouts and to calculate its dimensions. The software is a necessary support for the design phase, to solve the geometric complexity of the Delphin interface layout. Four different layouts have been
outlined. The initial model (1A) is the most complex: it presents several stone elements with different dimensions that reproduce the real situation of the historical walls. The stone blocks have a random design, without any standardization or orderliness. The second stratigraphy (1B) reproduce the real thicknesses and features of the wall. The external sides are formed by more regular stone blocks, while different stones compose the central nucleus. The third model (1C) is more regular than the previous one. The external sides are realized with solid stones and the central part has the same composition of the previous model. The last model (1D) has a very simplified layout composed only by a central layer made of stone. The Delphin layouts come from these schemes. The following image shows the different steps for the simplification of the model (Figure 2).

The second step concerns the definition of the same boundary conditions for the simulation and the in situ measurement to evaluate the accuracy of the results. Standard climatic data for the city of Bolzano (temperature, relative humidity, short wave radiation, rain, vapour diffusion, heat conduction) have been used. In addition, the heat flux density and the surface temperature of internal and external sides have been inserted to reproduce the measurement configuration.

The third step considers the geometrical discretization of the walls, in order to understand the accuracy of the model. The software discretizes rows and columns using either equidistant or variable grids. In the first case, all the rows and the columns have the same thickness. Its application is not correct for the historical walls, because the original layer geometry is completely lost. Therefore, a variable grid of vertical (all models) and horizontal (1A & 1B because 1C & 1D have same vertical structure) directions has been applied. In a second step we decide to use only the vertical discretization to reduce the simulation times (e.g. both vertical and horizontal = 6-2 day; only vertical 2h-5 minutes).

The fourth step regards the selection of the stone material. The following phases has been performed: (i) definition of the age of the wall with the support of historical researches; (ii) characterization of the type of stone, using literature, geographic maps, and coring; (iii) definition of the average thermal conductivity (λ-value) of the wall, matching historical researches, petrographic results, laboratory tests, and in situ measurements. Following, the characteristic of the materials are illustrated (Table 1).
Table 1: Properties of the different materials used in the geometric models

<table>
<thead>
<tr>
<th>Layer</th>
<th>Materials</th>
<th>(\lambda) W/mK</th>
<th>(c) J/kgK</th>
<th>(\rho) kg/m(^3)</th>
<th>1A</th>
<th>1B</th>
<th>1C</th>
<th>1D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface finish</td>
<td>Lime plaster</td>
<td>0.82</td>
<td>850</td>
<td>1800</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Stone ashlar</td>
<td>Granite</td>
<td>1.72</td>
<td>702</td>
<td>2452</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Clay mortar</td>
<td>0.58</td>
<td>488</td>
<td>1567</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nucleus</td>
<td>Sandstone</td>
<td>0.95</td>
<td>264</td>
<td>1966</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Clay mortar</td>
<td>0.58</td>
<td>488</td>
<td>1567</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Filling material</td>
<td>Sandstone</td>
<td>0.58</td>
<td>488</td>
<td>1567</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
</tbody>
</table>

RESULTS

First, it is necessary to define a time interval where the environmental and the wall conditions are fully operational. The software needs a period longer than the standard 72H to have a stable thermal behaviour (about 1 month). The comparison between the simulated surface heat fluxes shows very interesting results. The model 1D has the highest value, due to the simplicity of the monolithic structure composed only of granitic stone. The models 1B and 1C have similar results, thanks to the choice of the filling materials. In this case, the result is connected mainly to the material properties, not only to the geometry that is very similar. The model 1A has the lowest values, close to the in situ measurement. This is due to the complex design of the nucleus, not far from the real situation. Follow, the results are shown (Figure 3).

The surface temperature changes within the walls, in the horizontal and vertical sections. The simplest models (1C & 1D) made a 1-D simulation, with constant temperature along the vertical axis. This does not correspond to the reality, as shown by the IR-thermography. In the other models (1A & 1B) the temperature varies in the 2-D section. In both cases, the simulation shows the temperature fluctuation during the year (Figure 4).

The static calculation of the thermal conductance on one year shows the following results (Table 2).

Table 2: Comparison among the monitored and simulated thermal conductance

<table>
<thead>
<tr>
<th>Thermal conductance (m(^2)K/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitored data ((M_d))</td>
</tr>
<tr>
<td>1A</td>
</tr>
<tr>
<td>1.37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Difference (M_d-S_d) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
</tr>
</tbody>
</table>
The thermal conductance of the complex model (1A) is the most similar to the reality. The simple walls are more deviate from the actual case. The variability is in the range 5.5-35%.

CONCLUSIONS

The analysis of pre-industrial structures is very complex, due to the geometry, the composition, and the structure of the material. For this reason, the paper aims at understanding the influence of different geometrical simplifications, discretization, and material selections on the thermal performances of traditional stone walls. Furthermore, the comparison with the in situ measurements permits to evaluate the flexibility, the adaptability, and the accuracy of the results.

In general, the features of the traditional masonries are hardly represented in the current software and tools, due to the differences of materials, technologies, and morphology from contemporary architectures. The structure tested by us is one of the most popular traditional wall used until the nearly 1900 (especially in historical buildings and rural areas). At the same time, this system is the most difficult to interpret because its construction is not well defined. This is the first hurdle to be overcome. The simulation models are mainly thought for homogeneous or multi-layer walls, without a complex structure as the historic ones. On the contrary, the calculation for inhomogeneous walls is very complex. The most important difficulties for the simulation concern: (i) the graphic simplification of complex structures, and (ii) the material selection from existing databases. Likewise, the calculation databases are too much simplified for describing correctly the pre-industrial materials. In addition, the influence of wall orientation, climate data, and boundary conditions is relevant for the result.

The first problem is related to the geometric design of the structure and the disposition of the stone element. In general, more complex is the model, more reliable are the results. Despite the reflection apparently seems banal and obvious, behind that many considerations are hidden. As said in the introduction of the paper, the software works to fit a single material in a single region, so is impossible do an average between two or more materials. In this way, we must choose the nucleus composition: (i) 1D - nucleus composed only by stone; (ii) 1B and 1C - nucleus composed only by mortar, (iii) 1A - nucleus composed by mixed elements with a hypothetic geometry.
The excessive simplification (1D) of the model leads to unreliable results, while there are many similarities between the models 1B and 1C. Obviously, the model 1D is not a correct representation of real wall, but just a simplification of the elements present in the real wall (mortar and plaster). In this case, the wall is homogenous throughout the height, so a small piece represents all the wall section. The simplification is excessive: the difference with the monitored data is 36%. Reduced simplifications (AC, 1A and 1B) lead to more reliable results.

A second topic regards the percentage on stone and mortar. Normally, in steady state conditions, we tend to the mortar joints: first because it is difficult to estimate correctly this quantity and second because its percentage it is very lower for affecting the result. This theory has been shown comparing the results between the models 1B and 1C, whose difference regards only the presence of mortar joints. In addition, the model 1C is completely homogenous throughout the height, while the 1B is inhomogeneous (as it happens in the real wall). The R-value of the model 1C is 3% more than 1B, so apparently negligible. However, the difference with the monitored data is 15% (1B) and 18% (1C), so the first is closer to the reality and more reliable. Thus, the focus was try to find a graphic simplification that could be close to reality and could be replicable at the same time. Furthermore, the model 1A is not a correct representation of real wall, but the graphic simplification takes into account all the elements present in the real wall (mortar and plaster). In this case, the wall is homogenous throughout the height, so a small piece represents all the wall section.

This calculation tool has good flexibility to the application on historical walls, but its modelling is reliable only from adjusting the data on material propriety appropriately to obtain results close to the experimental data. The problem is real: as the matter of fact, the application of inadequate models causes risks and disadvantages for the buildings related to damage, corruption, and degradation. In addition, retrofit actions based on an incorrect understanding of the energy performances can cause serious physical damage and possible legal claims. Certainly, this is only a first step and it need further works for defining better the geometry, the influence of an insulating material, the hygrometric performance, and the influence of different climate and boundary conditions.

REFERENCES

Author’s index

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbas, Günsu Merin</td>
<td>185</td>
</tr>
<tr>
<td>Balla-S. Béla, Szilvia</td>
<td>105</td>
</tr>
<tr>
<td>Bertin, Vito</td>
<td>79</td>
</tr>
<tr>
<td>Botzheim, Bálint</td>
<td>213</td>
</tr>
<tr>
<td>Bödő, Gábor</td>
<td>235</td>
</tr>
<tr>
<td>Castellon Gonzalez, Juan José</td>
<td>177</td>
</tr>
<tr>
<td>Chang, Tengwen</td>
<td>163</td>
</tr>
<tr>
<td>Chaszar, Andre</td>
<td>227</td>
</tr>
<tr>
<td>D’Acunto, Pierluigi</td>
<td>177</td>
</tr>
<tr>
<td>Datta, Sambit</td>
<td>163</td>
</tr>
<tr>
<td>De Luca, Francesco</td>
<td>195</td>
</tr>
<tr>
<td>De Paris, Sabine</td>
<td>55</td>
</tr>
<tr>
<td>Dino, Ipek Gürsel</td>
<td>185</td>
</tr>
<tr>
<td>Dumitrescu, Delia</td>
<td>203</td>
</tr>
<tr>
<td>Elkady, Shawkat L.</td>
<td>169</td>
</tr>
<tr>
<td>Ezzat, Mohammed</td>
<td>111</td>
</tr>
<tr>
<td>Fehér, András</td>
<td>235</td>
</tr>
<tr>
<td>Fricker, Pia</td>
<td>119</td>
</tr>
<tr>
<td>Füzes, Bálint Péter</td>
<td>73</td>
</tr>
<tr>
<td>Gidófalvy, Kittí</td>
<td>213</td>
</tr>
<tr>
<td>Gyulai, Attila</td>
<td>67</td>
</tr>
<tr>
<td>Hadzijianisz, Konsztantinosz</td>
<td>235</td>
</tr>
<tr>
<td>Hegyi, Dezső</td>
<td>73</td>
</tr>
<tr>
<td>Heinrich, Benjamin</td>
<td>243</td>
</tr>
<tr>
<td>Iványi, Péter</td>
<td>221</td>
</tr>
<tr>
<td>Kari, Szabolcs</td>
<td>67</td>
</tr>
<tr>
<td>Kikunaga, Patricia Emy</td>
<td>213</td>
</tr>
<tr>
<td>Koenig, Reinhard</td>
<td>15</td>
</tr>
<tr>
<td>Kolarevic, Branko</td>
<td>27</td>
</tr>
<tr>
<td>Kulcke, Matthias</td>
<td>61</td>
</tr>
<tr>
<td>Lam, Wai Yin</td>
<td>79</td>
</tr>
<tr>
<td>Lellei, László</td>
<td>67</td>
</tr>
<tr>
<td>Lorenzo, Wolfgang E.</td>
<td>249</td>
</tr>
<tr>
<td>Lovas, Réka</td>
<td>235</td>
</tr>
<tr>
<td>Lucchi, Elena</td>
<td>155</td>
</tr>
<tr>
<td>Matsubayashi, Michio</td>
<td>87</td>
</tr>
<tr>
<td>Nováková, Kateřina</td>
<td>133</td>
</tr>
<tr>
<td>Nuno Lacerda Lopes, Carlos</td>
<td>55</td>
</tr>
<tr>
<td>Pascucci, Michela</td>
<td>155</td>
</tr>
<tr>
<td>Pletenac, Lidija</td>
<td>141</td>
</tr>
<tr>
<td>Reffat M., Rabee</td>
<td>169</td>
</tr>
<tr>
<td>Reith, András</td>
<td>213</td>
</tr>
<tr>
<td>Riedel, Miklós Márton</td>
<td>67</td>
</tr>
<tr>
<td>Rossado Espinoza, Verónica Paola</td>
<td>127</td>
</tr>
<tr>
<td>Sajtos, István</td>
<td>149</td>
</tr>
<tr>
<td>Sárközi, Réka</td>
<td>221</td>
</tr>
<tr>
<td>Schmitt, Gerhard</td>
<td>15</td>
</tr>
<tr>
<td>Seddik, Moamen M.</td>
<td>169</td>
</tr>
<tr>
<td>Selvær, Harald</td>
<td>99</td>
</tr>
<tr>
<td>Sik, András</td>
<td>67</td>
</tr>
<tr>
<td>Smolik, Andrei</td>
<td>163</td>
</tr>
<tr>
<td>Strommer, László</td>
<td>49</td>
</tr>
<tr>
<td>Sundfør, Ingolf</td>
<td>99</td>
</tr>
<tr>
<td>Surina, Dóra</td>
<td>235</td>
</tr>
<tr>
<td>Szabó, Beatrix</td>
<td>235</td>
</tr>
<tr>
<td>Széll, Attila Béla</td>
<td>221</td>
</tr>
<tr>
<td>Szilvási-Nagy, Márta</td>
<td>105</td>
</tr>
<tr>
<td>Szollár, András</td>
<td>213</td>
</tr>
<tr>
<td>Ther, Tamás</td>
<td>149</td>
</tr>
<tr>
<td>Vári, Barnabás</td>
<td>235</td>
</tr>
<tr>
<td>Watanabe, Shun</td>
<td>41, 87</td>
</tr>
<tr>
<td>Wurzer, Gabriel</td>
<td>243</td>
</tr>
<tr>
<td>Xu, Lei</td>
<td>93</td>
</tr>
<tr>
<td>Yajima, Kazumi</td>
<td>33</td>
</tr>
</tbody>
</table>
The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory.

Architects who keep up with the new designs demanded by the building industry will remain at the forefront of the design process in our information-technology based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process. We can get “back to command”.

The other message of our slogan is <Back to command>. In the expanding world of IT applications there is a need for the ready change of preliminary models by using parameters and scripts. These approaches retrieve the feeling of command-oriented systems, although, with much greater effectiveness.

Why CAADence in architecture?

"The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By definition, a cadence is a solo that precedes a closing formula, in which the soloist plays a series of personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuosic improvisation."