The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory. Architects who keep up with the new designs demanded by the building industry will remain at the forefront of the design process in our information-technology based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process. We can get "back to command".

The other message of our slogan is "Back to command". In the expanding world of IT applications there is a need for the ready change of preliminary models by using parameters and scripts. These approaches retrieve the feeling of command-oriented systems, DOWKRXJKZLWKPXFKJUHDWHUHɋHFWLYHQHVV

Why CAADence in architecture?

"The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By GHȴQLWLRQDFDGHQFHLVDVRORWKDWSUHFHGHVDFORVLQJIRUPXODLQZKLFKWKHVRORLVWSOD\VDVHULHVRI personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuosic improvisation."
CAADence in architecture
Back to command
Edited by Mihály Szoboszlai
CAADence in Architecture

Back to command

Proceedings of the International Conference on Computer Aided Architectural Design

16-17 June 2016
Budapest, Hungary
Faculty of Architecture
Budapest University of Technology and Economics

Edited by
Mihály Szoboszlai
Theme

CAADence in Architecture
Back to command

The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory. Architects who keep up with the new design demanded by the building industry will remain at the forefront of the design process in our IT-based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process. We can get “back to command”.

Our slogan “Back to Command” contains another message. In the expanding world of IT applications, one must be able to change preliminary models readily by using different parameters and scripts. These approaches bring back the feeling of command-oriented systems, although with much greater effectiveness.

Why CAADence in architecture?
“The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By definition, a cadence is a solo that precedes a closing formula, in which the soloist plays a series of personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuosic improvisation.”

Nowadays sophisticated CAAD (Computer Aided Architectural Design) applications might operate in the hand of architects like instruments in the hand of musicians. We have used the word association cadence/caadence as a sort of word play to make this event even more memorable.

Mihály Szoboszlai
Chair of the Organizing Committee
Sponsors

GRAPHISOFT
ARCHICAD

AUTODESK

STUDIO IN-EX
ARCHITECTS & ENGINEERS

MŰEGYETEM 1782

Építészeti Ábrázolás Tanszék
Department of Architectural Representation
Acknowledgement

We would like to express our sincere thanks to all of the authors, reviewers, session chairs, and plenary speakers. We also wish say thank you to the workshop organizers, who brought practice to theory closer together.
This conference was supported by our sponsors: GRAPHISOFT, AUTODESK, and STUDIO IN-EX. Additionally, the Faculty of Architecture at Budapest University of Technology and Economics provided support through its “Future Fund” (Jövő Alap), helping to bring internationally recognized speakers to this conference. Members of our local organizing team have supported this event with their special contribution – namely, their hard work in preparing and managing this conference.

Mihály Szoboszlai
Chair of the Organizing Committee

Local conference staff
Ádám Tamás Kovács, Bodó Bánáti, Imre Batta, Bálint Csabay, Benedek Gáspor, Alexandra Göőz, Péter Kaknics, András Zsolt Kovács, Erzsébet Kőnigné Tóth, Bence Krajnyák, Levente Lajtos, Pál Ledneczki, Mark Searle, Béla Marsal, Albert Máté, Boldizsár Medvey, Johanna Pék, Gábor Rátonyi, László Strommer, Zsanett Takács, Péter Zsigmond
Workshop tutors

Algorithmic Design through BIM
 Erik Havadi
 Laura Baróthy

Working with BIM Analyses
 Balázs Molnár
 Máté Csócsics
 Zsolt Oláh

OPEN BIM
 Ákos Rechtorisz
 Tamás Erős

GDL in Daily Work
 Gergely Fehér
 Dominika Bobály
 Gergely Hári
 James Badcock
List of Reviewers

Abdelmohsen, Sherif - Egypt
Achten, Henri - Czech Republic
Agkathidis, Asterios - United Kingdom
Asanowicz, Aleksander - Poland
Bhatt, Anand - India
Braumann, Johannes - Austria
Celani, Gabriela - Brazil
Cerovsek, Tomo - Slovenia
Chaszar, Andre - Netherlands
Chronis, Angelos - Spain
Dokonal, Wolfgang - Austria
Estévez, Alberto T. - Spain
Fricker, Pia - Switzerland
Herr, Christiane M. - China
Hoffmann, Miklós - Hungary
Juhász, Imre - Hungary
Jutraz, Anja - Slovenia
Kieferle, Joachim B. - Germany
Klinc, Robert - Slovenia
Koch, Volker - Germany
Kolarevic, Branko - Canada
König, Reinhard - Switzerland
Krakhofer, Stefan - Hong Kong
van Leeuwen, Jos - Netherlands
Lomker, Thorsten - United Arab Emirates
Lorenz, Wolfgang - Austria
Loveridge, Russell - Switzerland
Mark, Earl - United States
Molnár, Emil - Hungary
Mueller, Volker - United States
Nourian, Pirouz - Netherlands
Oxman, Rivka - Israel
Parlac, Vera - Canada
Quintus, Alex - United Arab Emirates
Searle, Mark - Hungary
Szoboszlai, Mihály - Hungary
Tuncer, Bige - Singapore
Verbeke, Johan - Belgium
Vermillion, Joshua - United States
Watanabe, Shun - Japan
Wojtowicz, Jerzy - Poland
Wurzer, Gabriel - Austria
Yamu, Claudia - Netherlands
Contents

14 Keynote speakers

15 Keynote
15 Backcasting and a New Way of Command in Computational Design
Reinhard Koenig, Gerhard Schmitt

27 Half Cadence: Towards Integrative Design
Branko Kolarevic

33 Call from the industry leaders
33 Kajima’s BIM Theory & Methods
Kazumi Yajima

41 Section A1 - Shape grammar
41 Minka, Machiya, and Gassho-Zukuri
Procedural Generation of Japanese Traditional Houses
Shun Watanabe

49 3D Shape Grammar of Polyhedral Spires
László Strommer

55 Section A2 - Smart cities
55 Enhancing Housing Flexibility Through Collaboration
Sabine Ritter De Paris, Carlos Nuno Lacerda Lopes

61 Connecting Online-Configurators (Including 3D Representations) with CAD-Systems
Small Scale Solutions for SMEs in the Design-Product and Building Sector
Matthias Kulcke

67 BIM to GIS and GIS to BIM
Szabolcs Kari, László Lellei, Attila Gyulai, András Sik, Miklós Márton Riedel
73 **Section A3 - Modeling with scripting**

73 **Parametric Details of Membrane Constructions**
Bálint Péter Füzes, Dezső Hegyi

79 **De-Script-ion: Individuality / Uniformity**
Helen Lam Wai-yin, Vito Bertin

87 **Section B1 - BIM**

87 **Forecasting Time between Problems of Building Components by Using BIM**
Michio Matsubayashi, Shun Watanabe

93 **Integration of Facility Management System and Building Information Modeling**
Lei Xu

99 **BIM as a Transformer of Processes**
Ingolf Sundfør, Harald Selvær

105 **Section B2 - Smooth transition**

105 **Changing Tangent and Curvature Data of B-splines via Knot Manipulation**
Szilvia B.-S. Béla, Márta Szilvási-Nagy

111 **A General Theory for Finding the Lightest Manmade Structures Using Voronoi and Delaunay**
Mohammed Mustafa Ezzat

119 **Section B3 - Media supported teaching**

119 **Developing New Computational Methodologies for Data Integrated Design for Landscape Architecture**
Pia Fricker

127 **The Importance of Connectivism in Architectural Design Learning: Developing Creative Thinking**
Verónica Paola Rossado Espinoza

133 **Ambient PET(b)ar**
Kateřina Nováková

141 **Geometric Modelling and Reconstruction of Surfaces**
Lidija Pletenac
Section C1 - Collaborative design + Simulation

Horizontal Load Resistance of Ruined Walls Case Study of a Hungarian Castle with the Aid of Laser Scanning Technology
Tamás Ther, István Sajtos

2D-Hygrothermal Simulation of Historical Solid Walls
Michela Pascucci, Elena Lucchi

Responsive Interaction in Dynamic Envelopes with Mesh Tessellation
Sambit Datta, Smolik Andrei, Tengwen Chang

Identification of Required Processes and Data for Facilitating the Assessment of Resources Management Efficiency During Buildings Life Cycle
Moamen M. Seddik, Rabee M. Reffat, Shawkat L. Elkady

Section C2 - Generative Design -1

Stereotomic Models In Architecture A Generative Design Method to Integrate Spatial and Structural Parameters Through the Application of Subtractive Operations
Juan José Castellón González, Pierluigi D’Acunto

Visual Structuring for Generative Design Search Spaces
Günsu Merin Abbas, İpek Gürsel Dino

Section D2 - Generative Design - 2

Solar Envelope Optimization Method for Complex Urban Environments
Francesco De Luca

Time-based Matter: Suggesting New Formal Variables for Space Design
Delia Dumitrescu

Performance-oriented Design Assisted by a Parametric Toolkit - Case study
Bálint Botzheim, Kitti Gidófalvy, Patricia Emy Kikunaga, András Szollár, András Reith

Classification of Parametric Design Techniques
Types of Surface Patterns
Réka Sárközi, Péter Iványi, Attila Béla Széll
Section D1 - Visualization and communication

Issues of Control and Command in Digital Design and Architectural Computation
Andre Chaszar

Integrating Point Clouds to Support Architectural Visualization and Communication
Dóra Surina, Gábor Bődő, Konsztantinosz Hadzijanisz, Réka Lovas, Beatrix Szabó, Barnabás Vári, András Fehér

Towards the Measurement of Perceived Architectural Qualities
Benjamin Heinrich, Gabriel Wurzer

Complexity across scales in the work of Le Corbusier
Using box-counting as a method for analysing facades
Wolfgang E. Lorenz

Author’s index
Keynote speakers

REINHARD KÖNIG

Reinhard König studied architecture and urban planning. He completed his PhD thesis in 2009 at the University of Karlsruhe. Dr. König has worked as a research assistant and appointed Interim Professor of the Chair for Computer Science in Architecture at Bauhaus-University Weimar. He heads research projects on the complexity of urban systems and societies, the understanding of cities by means of agent based models and cellular automata as well as the development of evolutionary design methods. From 2013 Reinhard König works at the Chair of Information Architecture, ETH Zurich. In 2014 Dr. König was guest professor at the Technical University Munich. His current research interests are applicability of multi-criteria optimisation techniques for design problems and the development of computational analysis methods for spatial configurations. Results from these research activities are transferred into planning software of the company DecodingSpaces. From 2015 Dr. König heads the Junior-Professorship for Computational Architecture at Bauhaus-University Weimar, and acts as Co-PI at the Future Cities Lab in Singapore, where he focus on Cognitive Design Computing.

Main research project: Planning Synthesis & Computational Planning Group see also the project description: Computational Planning Synthesis and his external research web site: Computational Planning Science

BRANKO KOLAREVIC

Branko Kolarevic is a Professor of Architecture at the University of Calgary Faculty of Environmental Design, where he also holds the Chair in Integrated Design and co-directs the Laboratory for Integrative Design (LID). He has taught architecture at several universities in North America and Asia and has lectured worldwide on the use of digital technologies in design and production. He has authored, edited or co-edited several books, including “Building Dynamics: Exploring Architecture of Change” (with Vera Parlac), “Manufacturing Material Effects” (with Kevin Klinger), “Performative Architecture” (with Ali Malkawi) and “Architecture in the Digital Age.” He is a past president of the Association for Computer Aided Design in Architecture (ACADIA), past president of the Canadian Architectural Certification Board (CACB), and was recently elected future president of the Association of Collegiate Schools of Architecture (ACSA). He is a recipient of the ACADIA Award for Innovative Research in 2007 and ACADIA Society Award of Excellence in 2015. He holds doctoral and master’s degrees in design from Harvard University and a diploma engineer in architecture degree from the University of Belgrade.
Horizontal Load Resistance of Ruined Walls
Case Study of a Hungarian Castle with the Aid of Laser Scanning Technology

Tamás Ther¹, István Sajtos²
¹,²Dept. Mechanics, Materials and Structures, Faculty of Architecture
Budapest University of Technology and Economics, Hungary
e-mail: {ther|sajtos}@szt.bme.hu

Abstract: The use of laser scanning technology for surveying historical buildings or ruins is gaining widespread popularity. While the “manual” surveying methods are time-consuming and provide just rough guess about the shape of the investigated complex building, the scanning process is very quick and the point cloud contains the “exact” geometry with the desired accuracy. This paper introduces a method, where by using the “exact” geometry of a ruined Hungarian castle, the stability of the remained walls is checked. With the aid of the point cloud an automated calculation process was developed, that defines the maximum wind load and earthquake ground acceleration as the limit load of the structures. The effect of geometrical precision was also investigated by varying the density of the point cloud.

Keywords: laser scanning, masonry, limit load

Doi: 10.3311/CAADence.1639

INTRODUCTION
The preservation of the architectural heritage is a crucial issue of our days. Various numerical methods, reinforcing techniques and new materials have been developed for the proper reconstruction of the antique or medieval buildings and structures. The amount of the required reinforcement can be defined just by the good understanding of the structure, which may start with the proper survey of the building. A really edifying research that investigated Michelangelo’s David statue [1] found that the former reinforcement of the masterpiece caused big part of the cracks at the ankle of the body. This reveals that without the deep understanding of the behavior the best preserving aim can be even harmful.

Laser scanning technology and data processing are in the focus of civil engineering researches as well. The advantages of the technology are the non-destructive nature of it, the very quick collection of data and the potential for use in a wide variety of fields. New methods are being presented, where automated segmentation of the point cloud results in a geometric basis for structural analysis [2], detects the cracks of the structure [3] or derives CAD models suitable for structural computations [4]. All these researches show a good way for the geometric pre-processing of the point cloud that can really be hard to manipulate manually. The result of the pre-process is a down-sam-
BRIEF HISTORY OF KANÁZSVÁR

1,2 km away from Mátraderecske a hill is situated that is coped with a fortress. The castle Kanázsvár was built sometime in the 13th century or maybe even earlier [5]. It was a little fortress in the northern part of present Hungary, with a guard tower, whose more than 15 m high ruin remained, Fig 2. The castle was destroyed during the 16th century, and since then the remains have been uncovered, while the wrecking still being going on. No excavations have been made even during the recent decades, resulting in a bundle of guesses about the history of the olden castle.

METHODOLOGY

Our investigations have been based on the following assumptions:
- the structure is homogeneous, so no hidden hollows, no cracks are taken into account
- the masonry does not have tensile strength, the material is elasto-plastic
- based on the non-destructive on-site experiments, the stone is andesite, with a density of approx. 22 kN/m³. The compressive strength of the stone is at least 60N/mm² (strength of the andesite ranges from 60 to 270 N/mm²) and
The point clouds

Figure 3: The point clouds with different data density

when calculating with a weak mortar, the estimated compressive strength of the masonry is ~14,0 N/mm²
- the orientation of the coordinate system: the horizontal plain is the x-y plane, the vertical axis is the z

The survey has been made by MindiGIS Ltd., and we have received a “clear” point cloud that did not contain the vegetation and just showing the main part of the hilltop with the ruins of the tower. While no excavations were done, the level of the foundation is unknown, so we have decided to investigate the stability at the base, where the whole cross-section of the structure is just above the ground. To define the effect of the point cloud accuracy on the results, we were given data with 3 cm, 10 cm, 25 cm and 50 cm grid. The coordinates from the .dxf file were exported to MatLab [7] (Fig 3).

The first question is the stability of the structure for its dead load. To calculate the projection of the centroid of the structure at the base, we cut the structure by m horizontal plains. The cutting planes are at a distance of Δh from each other, which is equal to the average density of the point cloud. The points that are at distances of -Δh/2 and Δh/2 from the reference plane are projected into that plane. Based on the coordinates of these points, the contour polygon of the section is defined at the given level using the built-in boundary command in MatLab [7]. The polygon defines the section, and its area and the coordinates of its centroid can be calculated in each section [8].

\[A^j = \frac{1}{2} \sum_{i=1}^{n-1} (x_i y_{i+1} - x_{i+1} y_i), \quad (1) \]

\[c_x^j = \frac{1}{6A^j} \sum_{i=1}^{n-1} [(x_i + x_{i+1}) \cdot (x_i y_{i+1} - x_{i+1} y_i)], \quad (2) \]

\[c_y^j = \frac{1}{6A^j} \sum_{i=1}^{n-1} [(y_i + y_{i+1}) \cdot (x_i y_{i+1} - x_{i+1} y_i)], \quad (3) \]

where \(A^j \) is the area of the \(j^{th} \) section defined by the polygon coordinates \(x \) and \(y \). The length of vectors \(x \) and \(y \) is \(n \), where \(x_n=x_1 \) and \(y_n=y_1 \). The \(c_x^j \) and \(c_y^j \) are the coordinates of the centroid of the \(j^{th} \) section. Knowing the centroid of the section at the foundation, the origin of the global coordinate system is moved there.

The integral of the areas of these sections along the height gives the volume of the structure. Based on that we can define its weight by assuming the density of the masonry as stated above.

Figure 4 shows the areas of the sections and the volume of the structure. The difference of the results for different density of the point clouds was
almost negligible (there is only 1% difference between the smallest and largest volumes): the volume of the structure for different data density (Fig 3) is 204.2 - 207.5 - 211.1 - 206.3 m3. The result of the second dataset (density: 10 cm) approximates most closely the average, so we choose 207.5 m3, which means $Gk = 4565$ kN weight.

The eccentricity of the dead load of each Δh high section can be calculated as follows:

$$N^j = \rho \Delta h A^j,$$

where N^j and M^j are the normal force and the bending moment caused by the j^{th} section respectively. The calculated eccentricity at the foundation is $e_{0} = 0.4$ m.

The next question is whether the point of action of the weight corresponding to this eccentricity is within the core of the section generating just compressive stresses at the foundation and not causing cracks. To find the core of section at the foundation section, we need to calculate the principal axes and the principal moment of inertias. The moment of inertias (also known as second moment of area) of a polygonal shape, about the global x and y axes can be calculated by the following equations [8]:

$$I_x = \frac{1}{12} \sum_{i=1}^{n-1} [(y_i^2 + y_i y_{i+1} + y_{i+1}^2)(x_i y_{i+1} - x_{i+1} y_i)],$$

$$I_y = \frac{1}{12} \sum_{i=1}^{n-1} [(x_i^2 + x_i x_{i+1} + x_{i+1}^2)(x_i y_{i+1} - x_{i+1} y_i)],$$

$$I_{xy} = \frac{1}{24} \sum_{i=1}^{n-1} [(x_i y_{i+1} + 2x_i y_i + 2x_{i+1} y_{i+1} + x_{i+1} y_i)(x_i y_{i+1} - x_{i+1} y_i)].$$
Where \(I_x \) and \(I_y \) are moment of inertias of the polygonal shape about the \(x \) and \(y \) axes, and \(I_{xy} \) is the product of inertia. To find the principal moment of inertias \(I_x \) and \(I_y \), we need to solve the characteristic equation of the \(I \) matrix of tensor of inertia. The eigenvectors of the matrix define the position of the principal axes.

\[
\det \begin{bmatrix}
I_x - \lambda & I_{xy} \\
I_{xy} & I_y - \lambda
\end{bmatrix} = 0 \quad [11]
\]

Core of section of a cross section is a locus where applied compression force causes just compressive stress over the whole section. In this case the neutral axis does not intersect the cross-section. We can find the corner points of this convex polygon by solving the following equation for every side of the convex contour of the cross section.

\[
-\frac{1}{A} + \frac{k_y^i}{l_1} P_y + \frac{k_x^i}{l_2} P_x = 0, \quad [12]
\]

where \(k_x^i \) and \(k_y^i \) are the coordinates of the \(i^{th} \) point of the core of section corresponding to the \(i^{th} \) edge of the convex contour of cross section. The \(P \) points are arbitrary points on the edge.

RESULTS

Figure 5 shows the core of section at the foundation and the eccentricity of the self-weight. It is clearly seen that the resultant force is within the core of section, so the whole area is under compression. This means, that there are no stability problems with the structure for the self-weight.

The next question is the effect of horizontal loads: what is the maximum wind load the structure can take? We wish to find the load, where the eccentricity is about to reach the contour of the core of section. For this, an optimization process was developed in MatLab with two parameters: the magnitude of the uniform wind load, and the angle of the wind (i.e. wind direction). The loaded area is assumed to be the contour of the structure that faces the wind. For arbitrary angles the area and the centroid of the vertical plane were calculated and the related destabilizing moment at the foundation was determined as well.

The results can be seen in Figure 6. The load that causes tension stresses at the foundation is 1.5 kN/m². The wind load need to be considered [9] is \(w_k = 1.155 \) kN/m² based on the \(q_{ed} = 1.05 \) and the shape factor, that is \(c_{pe} = 1.1 \) for polygonal buildings with this slenderness [10]. This shows that as the result of the design value of the wind load \((w_{ed} = 1.73 \) kN/m²), there are tension stresses on the section, so just a certain part of the cross section is under compression. Assuming plastic stress state, at least a 0.35 m² compressed zone is required to balance the dead load of the structure. This is less than 2.5% of the base area, and would result some 1.6 m eccentricity at the most dangerous point.
The effect of the earthquake can be investigated by assuming the followings, using the response spectrum method [11]:
- the first mode shape of the building is considered
- the structure is rigid, so \(T_a < T_c < T_e \)
- behavior factor of the masonry is taken to be \(q = 2.5 \)
- the structure is in the northern part of Hungary, where the base acceleration on rock is \(a_{g,R} = 0.1 \text{ g} \)
- the castle was built on rock, so the soil class is \(A \), so \(S = 1.0 \)

Based on this data, the resulting base shear force is \(F_b = 456.5 \text{ kN} \), which causes \(M_{\text{destab}} = 3350 \text{ kNm} \) moment at the base, and 0.74 m eccentricity. This results 1.14 m total eccentricity, which is still less than the above stated limit eccentricity 1.6 m.

CONCLUSION

In this paper we have investigated the stability of the remaining part of an old castle tower. While the structure needs to be renovated, a survey of the masonry has been performed using laser scanning technology. The original point cloud was made at a 1 to 2 mm accuracy resulting over 200 million points which was unmanageable for our studies. We found that the point cloud with an accuracy of 10 cm still gives accurate results, and the amount of the data permits fast calculations. It was an interesting experience, that the point cloud with accuracy values of 25 cm and 50 cm gave also acceptable results (less than 2% difference in the volume of the structure).

The structure was found to be safe against the dead load and the probable horizontal loads. We could define the limit eccentricity, for which the whole section is under compression. We defined the ultimate eccentricity for which the structure is safe. The developed method is automated, and it can be easily adopted to other point clouds of structures.

In our investigations it was not considered that the structure can fall down due to inner cracks or hollows. Therefore, the preservation of the surface against the wind, rain and snow and the pointing of the masonry are necessary to ensure that the structure remains safe for the following decades and centuries.

ACKNOWLEDGEMENT

The authors wish to express their gratitude to MindiGIS Ltd. and Gábor Magos for the survey of the castle, to Róbert Fülöpp for the preparation of the “clear” point cloud and for making the data available and to Ágoston Halász for conducting the archaeological survey.

REFERENCES

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbas, Günsu Merin</td>
<td>185</td>
</tr>
<tr>
<td>Balla-S. Béla, Szilvia</td>
<td>105</td>
</tr>
<tr>
<td>Bertin, Vito</td>
<td>79</td>
</tr>
<tr>
<td>Botzheim, Bálint</td>
<td>213</td>
</tr>
<tr>
<td>Bödő, Gábor</td>
<td>235</td>
</tr>
<tr>
<td>Castellon Gonzalez, Juan José</td>
<td>177</td>
</tr>
<tr>
<td>Chang, Tengwen</td>
<td>163</td>
</tr>
<tr>
<td>Chaszar, Andre</td>
<td>227</td>
</tr>
<tr>
<td>D’Acunto, Pierluigi</td>
<td>177</td>
</tr>
<tr>
<td>Datta, Sambit</td>
<td>163</td>
</tr>
<tr>
<td>De Luca, Francesco</td>
<td>195</td>
</tr>
<tr>
<td>De Paris, Sabine</td>
<td>55</td>
</tr>
<tr>
<td>Dino, İpek Gürsel</td>
<td>185</td>
</tr>
<tr>
<td>Dumitrescu, Delia</td>
<td>203</td>
</tr>
<tr>
<td>Elkady, Shawkat L.</td>
<td>169</td>
</tr>
<tr>
<td>Ezzat, Mohammed</td>
<td>111</td>
</tr>
<tr>
<td>Fehér, András</td>
<td>235</td>
</tr>
<tr>
<td>Fricker, Pia</td>
<td>119</td>
</tr>
<tr>
<td>Füzes, Bálint Péter</td>
<td>73</td>
</tr>
<tr>
<td>Gidófalvy, Kittí</td>
<td>213</td>
</tr>
<tr>
<td>Gyulai, Attila</td>
<td>67</td>
</tr>
<tr>
<td>Hadzijianysz, Konsztantinosz</td>
<td>235</td>
</tr>
<tr>
<td>Hegyi, Dezső</td>
<td>73</td>
</tr>
<tr>
<td>Heinrich, Benjamin</td>
<td>243</td>
</tr>
<tr>
<td>Iványi, Péter</td>
<td>221</td>
</tr>
<tr>
<td>Kari, Szabolcs</td>
<td>67</td>
</tr>
<tr>
<td>Kikunaga, Patricia Emy</td>
<td>213</td>
</tr>
<tr>
<td>Koenig, Reinhard</td>
<td>15</td>
</tr>
<tr>
<td>Kolarevic, Branko</td>
<td>27</td>
</tr>
<tr>
<td>Kulcke, Matthias</td>
<td>61</td>
</tr>
<tr>
<td>Lam, Wai Yin</td>
<td>79</td>
</tr>
<tr>
<td>Lellei, László</td>
<td>67</td>
</tr>
<tr>
<td>Lorenz, Wolfgang E.</td>
<td>249</td>
</tr>
<tr>
<td>Lovas, Réka</td>
<td>235</td>
</tr>
<tr>
<td>Lucchi, Elena</td>
<td>155</td>
</tr>
<tr>
<td>Matsubayashi, Michio</td>
<td>87</td>
</tr>
<tr>
<td>Nováková, Kateřina</td>
<td>133</td>
</tr>
<tr>
<td>Nuno Lacerda Lopes, Carlos</td>
<td>55</td>
</tr>
<tr>
<td>Pascucci, Michela</td>
<td>155</td>
</tr>
<tr>
<td>Pletenac, Lidija</td>
<td>141</td>
</tr>
<tr>
<td>Reffat M., Rabee</td>
<td>169</td>
</tr>
<tr>
<td>Reith, András</td>
<td>213</td>
</tr>
<tr>
<td>Riedel, Miklós Márton</td>
<td>67</td>
</tr>
<tr>
<td>Rossado Espinoza, Verónica Paola</td>
<td>127</td>
</tr>
<tr>
<td>Sajtos, István</td>
<td>149</td>
</tr>
<tr>
<td>Sárközi, Réka</td>
<td>221</td>
</tr>
<tr>
<td>Schmitt, Gerhard</td>
<td>15</td>
</tr>
<tr>
<td>Seddik, Moamen M.</td>
<td>169</td>
</tr>
<tr>
<td>Selvær, Harald</td>
<td>99</td>
</tr>
<tr>
<td>Sik, András</td>
<td>67</td>
</tr>
<tr>
<td>Smolik, Andrei</td>
<td>163</td>
</tr>
<tr>
<td>Strommer, László</td>
<td>49</td>
</tr>
<tr>
<td>Sundfør, Ingolf</td>
<td>99</td>
</tr>
<tr>
<td>Surina, Dóra</td>
<td>235</td>
</tr>
<tr>
<td>Szabó, Beatrix</td>
<td>235</td>
</tr>
<tr>
<td>Széll, Attila Béla</td>
<td>221</td>
</tr>
<tr>
<td>Szilvási-Nagy, Márta</td>
<td>105</td>
</tr>
<tr>
<td>Szollár, András</td>
<td>213</td>
</tr>
<tr>
<td>Ther, Tamás</td>
<td>149</td>
</tr>
<tr>
<td>Vári, Barnabás</td>
<td>235</td>
</tr>
<tr>
<td>Watanabe, Shun</td>
<td>41, 87</td>
</tr>
<tr>
<td>Wurzer, Gabriel</td>
<td>243</td>
</tr>
<tr>
<td>Xu, Lei</td>
<td>93</td>
</tr>
<tr>
<td>Yajima, Kazumi</td>
<td>33</td>
</tr>
</tbody>
</table>
The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory.

Architects who keep up with the new designs demanded by the building industry will remain at the forefront of the design process in our information-technology based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process. We can get “back to command”.

The other message of our slogan is <Back to command>.

In the expanding world of IT applications there is a need for the ready change of preliminary models by using parameters and scripts. These approaches retrieve the feeling of command-oriented systems, although, with much greater effectiveness.

Why CAADence in architecture?

"The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By definition, a cadence is a solo that precedes a closing formula, in which the soloist plays a series of personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuosic improvisation."