The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory.

Architects who keep up with the new designs demanded by the building industry will remain at the forefront of the design process in our information-technology based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process. We can get "back to command".

The other message of our slogan is "back to command".

In the expanding world of IT applications there is a need for the ready change of preliminary models by using parameters and scripts. These approaches retrieve the feeling of command-oriented systems,

Why CAADence in architecture?

"The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By

personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuosic improvisation."

Edited by Mihály Szoboszlai

ISBN 978-963-313-225-8
Back to command
Edited by Mihály Szoboszlai
CAADence in Architecture
Back to command

Proceedings of the International Conference on Computer Aided Architectural Design

16-17 June 2016
Budapest, Hungary
Faculty of Architecture
Budapest University of Technology and Economics

Edited by
Mihály Szoboszlai
Theme

CAADence in Architecture
Back to command

The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory. Architects who keep up with the new design demanded by the building industry will remain at the forefront of the design process in our IT-based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process. We can get “back to command”.

Our slogan ”Back to Command” contains another message. In the expanding world of IT applications, one must be able to change preliminary models readily by using different parameters and scripts. These approaches bring back the feeling of command-oriented systems, although with much greater effectiveness.

Why CAADence in architecture?

“The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By definition, a cadence is a solo that precedes a closing formula, in which the soloist plays a series of personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuosic improvisation.”

Nowadays sophisticated CAAD (Computer Aided Architectural Design) applications might operate in the hand of architects like instruments in the hand of musicians. We have used the word association cadence/caadence as a sort of word play to make this event even more memorable.

Mihály Szoboszlai
Chair of the Organizing Committee
Sponsors

GRAPHISOFT
ARCHICAD

AUTODESK

STUDIO IN-EX
ARCHITECTS & ENGINEERS

Építészeti Ábrázolás Tanszék
Department of Architectural Representation
Acknowledgement

We would like to express our sincere thanks to all of the authors, reviewers, session chairs, and plenary speakers. We also wish to say thank you to the workshop organizers, who brought practice to theory closer together.

This conference was supported by our sponsors: GRAPHISOFT, AUTODESK, and STUDIO IN-EX. Additionally, the Faculty of Architecture at Budapest University of Technology and Economics provided support through its “Future Fund” (Jövő Alap), helping to bring internationally recognized speakers to this conference.

Members of our local organizing team have supported this event with their special contribution – namely, their hard work in preparing and managing this conference.

Mihály Szoboszlai
Chair of the Organizing Committee

Local conference staff
Ádám Tamás Kovács, Bodó Bánáti, Imre Batta, Bálint Csabay, Benedek Gászpor, Alexandra Göőz, Péter Kaknics, András Zsolt Kovács, Erzsébet Kőnigné Tóth, Bence Krajnyák, Levente Lajtos, Pál Ledneczki, Mark Searle, Béla Marsal, Albert Máté, Boldizsár Medvey, Johanna Pék, Gábor Rátonyi, László Strommer, Zsanett Takács, Péter Zsigmond
Workshop tutors

Algorithmic Design through BIM
Erik Havadi
Laura Baróthy

Working with BIM Analyses
Balázs Molnár
Máté Csócsics
Zsolt Oláh

OPEN BIM
Ákos Rechtorisz
Tamás Erős

GDL in Daily Work
Gergely Fehér
Dominika Bobály
Gergely Hári
James Badcock
List of Reviewers

Abdelmohsen, Sherif - Egypt
Achten, Henri - Czech Republic
Agkathidis, Asterios - United Kingdom
Asanowicz, Aleksander - Poland
Bhatt, Anand - India
Braumann, Johannes - Austria
Celani, Gabriela - Brazil
Cerovsek, Tomo - Slovenia
Chaszar, Andre - Netherlands
Chronis, Angelos - Spain
Dokonal, Wolfgang - Austria
Estévez, Alberto T. - Spain
Fricker, Pia - Switzerland
Herr, Christiane M. - China
Hoffmann, Miklós - Hungary
Juhász, Imre - Hungary
Jutraz, Anja - Slovenia
Kieferle, Joachim B. - Germany
Klinc, Robert - Slovenia
Koch, Volker - Germany
Kolarevic, Branko - Canada
König, Reinhard - Switzerland
Krakhofer, Stefan - Hong Kong
van Leeuwen, Jos - Netherlands
Lomker, Thorsten - United Arab Emirates
Lorenz, Wolfgang - Austria
Loveridge, Russell - Switzerland
Mark, Earl - United States
Molnár, Emil - Hungary
Mueller, Volker - United States
Nourian, Pirouz - Netherlands
Oxman, Rivka - Israel
Parlac, Vera - Canada
Quintus, Alex - United Arab Emirates
Searle, Mark - Hungary
Szoboszlai, Mihály - Hungary
Tuncer, Bige - Singapore
Verbeke, Johan - Belgium
Vermillion, Joshua - United States
Watanabe, Shun - Japan
Wojtowicz, Jerzy - Poland
Wurzer, Gabriel - Austria
Yamu, Claudia - Netherlands
Contents

14 Keynote speakers

15 Keynote

15 Backcasting and a New Way of Command in Computational Design
 Reinhard Koenig, Gerhard Schmitt

27 Half Cadence: Towards Integrative Design
 Branko Kolarevic

33 Call from the industry leaders

33 Kajima’s BIM Theory & Methods
 Kazumi Yajima

41 Section A1 - Shape grammar

41 Minka, Machiya, and Gassho-Zukuri
 Procedural Generation of Japanese Traditional Houses
 Shun Watanabe

49 3D Shape Grammar of Polyhedral Spires
 László Strommer

55 Section A2 - Smart cities

55 Enhancing Housing Flexibility Through Collaboration
 Sabine Ritter De Paris, Carlos Nuno Lacerda Lopes

61 Connecting Online-Configurators (Including 3D Representations) with
 CAD-Systems
 Small Scale Solutions for SMEs in the Design-Product and Building Sector
 Matthias Kulcke

67 BIM to GIS and GIS to BIM
 Szabolcs Kari, László Lellei, Attila Gyulai, András Sik, Miklós Márton Riedel
73 **Section A3 - Modeling with scripting**

73 **Parametric Details of Membrane Constructions**
Bálint Péter Füzes, Dezső Hegyi

79 **De-Script-ion: Individuality / Uniformity**
Helen Lam Wai-yin, Vito Bertin

87 **Section B1 - BIM**

87 **Forecasting Time between Problems of Building Components by Using BIM**
Michio Matsubayashi, Shun Watanabe

93 **Integration of Facility Management System and Building Information Modeling**
Lei Xu

99 **BIM as a Transformer of Processes**
Ingolf Sundfør, Harald Selvær

105 **Section B2 - Smooth transition**

105 **Changing Tangent and Curvature Data of B-splines via Knot Manipulation**
Szilvia B.-S. Béla, Márta Szilvási-Nagy

111 **A General Theory for Finding the Lightest Manmade Structures Using Voronoi and Delaunay**
Mohammed Mustafa Ezzat

119 **Section B3 - Media supported teaching**

119 **Developing New Computational Methodologies for Data Integrated Design for Landscape Architecture**
Pia Fricker

127 **The Importance of Connectivism in Architectural Design Learning: Developing Creative Thinking**
Verónica Paola Rossado Espinoza

133 **Ambient PET(b)ar**
Kateřina Nováková

141 **Geometric Modelling and Reconstruction of Surfaces**
Lidija Pletenac
149 Section C1 - Collaborative design + Simulation
149 Horizontal Load Resistance of Ruined Walls Case Study of a Hungarian Castle with the Aid of Laser Scanning Technology
Tamás Ther, István Sajtos
155 2D-Hygrothermal Simulation of Historical Solid Walls
Michela Pascucci, Elena Lucchi
163 Responsive Interaction in Dynamic Envelopes with Mesh Tessellation
Sambit Datta, Smolik Andrei, Tengwen Chang
169 Identification of Required Processes and Data for Facilitating the Assessment of Resources Management Efficiency During Buildings Life Cycle
Moamen M. Seddik, Rabee M. Reffat, Shawkat L. Elkady

177 Section C2 - Generative Design -1
177 Stereotomic Models In Architecture A Generative Design Method to Integrate Spatial and Structural Parameters Through the Application of Subtractive Operations
Juan José Castellón González, Pierluigi D’Acunto
185 Visual Structuring for Generative Design Search Spaces
Günsu Merin Abbas, İpek Gürsel Dino

195 Section D2 - Generative Design - 2
195 Solar Envelope Optimization Method for Complex Urban Environments
Francesco De Luca
203 Time-based Matter: Suggesting New Formal Variables for Space Design
Delia Dumitrescu
213 Performance-oriented Design Assisted by a Parametric Toolkit - Case study
Bálint Botzheim, Kitti Gidófalvy, Patricia Emy Kikunaga, András Szollár, András Reith
221 Classification of Parametric Design Techniques Types of Surface Patterns
Réka Sárközi, Péter Iványi, Attila Béla Széll
227 Section D1 - Visualization and communication

227 Issues of Control and Command in Digital Design and Architectural Computation
 Andre Chaszar

235 Integrating Point Clouds to Support Architectural Visualization and Communication
 Dóra Surina, Gábor Bődő, Konsztantinosz Hadzijanisz, Réka Lovas, Beatrix Szabó, Barnabás Vári, András Fehér

243 Towards the Measurement of Perceived Architectural Qualities
 Benjamin Heinrich, Gabriel Wurzer

249 Complexity across scales in the work of Le Corbusier
 Using box-counting as a method for analysing facades
 Wolfgang E. Lorenz

256 Author’s index
Keynote speakers

REINHARD KÖNIG

Reinhard König studied architecture and urban planning. He completed his PhD thesis in 2009 at the University of Karlsruhe. Dr. König has worked as a research assistant and appointed Interim Professor of the Chair for Computer Science in Architecture at Bauhaus-University Weimar. He heads research projects on the complexity of urban systems and societies, the understanding of cities by means of agent based models and cellular automata as well as the development of evolutionary design methods. From 2013 Reinhard König works at the Chair of Information Architecture, ETH Zurich. In 2014 Dr. König was guest professor at the Technical University Munich. His current research interests are applicability of multi-criteria optimisation techniques for design problems and the development of computational analysis methods for spatial configurations. Results from these research activities are transferred into planning software of the company DecodingSpaces. From 2015 Dr. König heads the Junior-Professorship for Computational Architecture at Bauhaus-University Weimar, and acts as Co-PI at the Future Cities Lab in Singapore, where he focus on Cognitive Design Computing. Main research project: Planning Synthesis & Computational Planning Group see also the project description: Computational Planning Synthesis and his external research web site: Computational Planning Science

BRANKO KOLAREVIC

Branko Kolarevic is a Professor of Architecture at the University of Calgary Faculty of Environmental Design, where he also holds the Chair in Integrated Design and co-directs the Laboratory for Integrative Design (LID). He has taught architecture at several universities in North America and Asia and has lectured worldwide on the use of digital technologies in design and production. He has authored, edited or co-edited several books, including “Building Dynamics: Exploring Architecture of Change” (with Vera Parlac), “Manufacturing Material Effects” (with Kevin Klinger), “Performative Architecture” (with Ali Malkawi) and “Architecture in the Digital Age.” He is a past president of the Association for Computer Aided Design in Architecture (ACADIA), past president of the Canadian Architectural Certification Board (CACB), and was recently elected future president of the Association of Collegiate Schools of Architecture (ACSA). He is a recipient of the ACADIA Award for Innovative Research in 2007 and ACADIA Society Award of Excellence in 2015. He holds doctoral and master’s degrees in design from Harvard University and a diploma engineer in architecture degree from the University of Belgrade.
A General Theory for Finding the Lightest Manmade Structures Using Voronoi and Delaunay

Mohammed Mustafa Ezzat

1Department of Architecture and Urban Design, Faculty of Engineering, German University in Cairo, Cairo, Egypt.
e-mail: Mohammed.ezzat@guc.edu.eg, m.ezzat@me-archs.com

Abstract: A general theory for finding the lightest possible structures is introduced in this article. Then a special centroid form of the theory is introduced. This special form will later help in the implementation of the general theory itself. The proposed theory applies to any structure regardless of size. The paper examines the special form of the theory on a load case over a cantilevered beam and a shelter structure. The results achieved computationally using the special centroid form of the theory were six to eleven times better than any other available optimized proposed alternative. The importance of Voronoi/Delaunay Diagrams is not only their influential existence in nature but also their ability to adapt to the other possible forms.

Keywords: A search for lightest structure, general theory, special concentric form of the theory

DOI: 10.3311/CAADence.1623

INTRODUCTION

For all the techniques introduced in this paper, the following tools are used:

• Grasshopper [1]: a visual programming language developed by David Rutten at Robert McNeel & Associates that runs within the Rhinoceros 3D computer-aided design (CAD) application.
• Galapagos [2]: an optimizer component that runs under Grasshopper. It provides a generic platform for the application of Evolutionary Algorithms.
• Millipede [3]: a structural analysis and optimization component for Grasshopper. It allows for very fast linear elastic analysis of frame and shell elements in 3D, 2D plate elements for in-plane forces, and 3D volumetric elements. It produces the initial point cloud.
• Karamba [4]: a parametric structural engineering tool, which provides an accurate analysis of spatial trusses, frames and shells. It is used to find the optimized version of the presumed Voronoi/Delaunay.
• The Delaunay triangulation and its dual Voronoi diagram as in Figure 1. The paper’s aim is to find the points upon which Voronoi/Delaunay would be defined. The aim is to find the optimal Voronoi/Delaunay structural representation based on the calculated stresses of the point cloud produced by Millipede as in Figure 2. These point clouds are the input to our optimization as in Figure 4. This cloud represents the data for the model. Our evolving understanding and interpretation of these points will vary over the optimization process. Our understanding and classification of the cloud represent the knowledge produced by the model. This understanding will prove to be optimal, or not, by using the evolutionary optimizer of Galapagos. A structural engineering tool (Karamba) will be used during the optimization.

THE GENERAL THEORY:
The two main constituents of the general theory are:
A) To optimally classify the point cloud into different zones.
B) To represent each zone by a point, curve, surface, or mass.
An exemplary implementation of the theory is illustrated in Figure 3. The theory is general because it enlists all the possibilities of the zones representations. Though these two assumptions seem simple, the difficulty arises for the theories that implement them. The paper includes an implementation that is based on the centroid method described in section 2.0.

1. THE CENTROID MODEL:
This is the simplest model, computationally and theoretically, to interpret and to understand the cloud. Our understanding of the cloud can readily be proved as optimal or not, as the physical consequent can easily be constructed. We present two methods to understand the cloud. In the first method of analogous systems, optimality is achieved by defining a parallel system that is affected by some of the attributes of the cloud. The applications of this method are the most common of the known structural optimization methods [5]. The second method, which is the paper’s main focus, is the classification method. In our digital testing environment, the classification methods superseded the analogous systems by five to ten times.
Figure 4: An overall representation of the introduced optimization model. The tools used, its rules, and the data/knowledge section are illustrated; the structural optimization and the optimal chord dimensions are summarized.
1.1. Analogous systems (our implementation):

The bounding box of the cloud is divided into equal boxes. The mean of the stresses of the points, inside each of the dividing boxes, is calculated. The values of these means were compared. Based on this comparison, a number of points were allocated to each dividing box. Other exemplary analogous systems can be found in [5].

1.2. Classification methods:

1.2.1. Bell-shaped distribution:

A variation of the normal distribution is used, as the possible skewness of the distribution is of minor importance compared to its computational needs. The chosen bell-shaped Function [1] is more general than the normal distribution. The \(a, b,\) and \(c\) parameters can optimize our understanding of the data as in Figure 6. Galapagos’ main task is to find the composition of these parameters. This would cluster the cloud to produce a local, or global, optimal structure.

\[
F(x) = \frac{1}{1 + \left(\frac{x - c}{a}\right)^{2*b}}
\]

1.2.2. Machine learning classifiers:

Our earliest optimization effort in this research was to find a mean and a variance that represents each group of the cloud’s points. The hypothesis was that this representation would yield an optimal structure. This effort was found to be a match of the well-known EM algorithm’s Gaussian Mixture’s implementation [6], which is one of the machine learning classifiers. Some of the included machine learning classifiers may be used instead of the bell-shaped distribution or as a final process after the bell-shaped optimization.

1.2.2.1. Hierarchical Agglomerative Clustering:

This method is a computationally expensive method [6]. A binary-tree like data structure is created based on the closest neighbors’ 3d locations and stresses. This method can substitute the bell function [1] in producing initial centers that can later be used by other classifiers. One of the important features of this method is the simplicity of predicting the optimal number of clusters.

1.2.2.2. K-Means Clustering:

The K-Means method is considered the mainstay for our optimization. It must have a centroid guesser for the K-Means calculation process to start. Afterward, each point should belong to the nearest center. After the point clustering is completed, new centroids are calculated, and the process would iterate until convergence.

114 | CAADence in Architecture <Back to command> | Section B2 - Smooth transition
1.2.2.3. Gaussian Mixtures & EM Clustering:
The probabilistic Gaussian Mixtures implementation of the converging EM clustering algorithm was the initial focus. We started our classification efforts by implementing similar techniques. It can replace the K-Means algorithm, but with a higher cost.

1.2.3. Discussion regarding the proposed classifiers:
The introduced algorithms could be classified into two groups. The first group, as in Figure 7, is responsible for predicting the optimal number of clusters and a best guess initial optimization. The bell-shaped Function [1] is optimizable, and its local optimizations can be used without any further optimization.

1.3. Chord dimensions’ optimization:
After defining an optimal structure of the general or the concentric theory, the last step in the optimization is to define an optimal dimension for each chord. The chord dimensions optimization enhances structural optimization two to four times. The optimization can be carried out by using Function [1]. The utilization property of each chord of the optimal structure is sorted in ascending order; Galapagos then calculates the proper parameters of Function [1] until reaching the lightest possible structure. This introduced technique can optimally designate different dimensions of any structure type.
2. AN IMPLEMENTATION OF THE GENERAL THEORY:

To implement the general theory, we need to define the optimal classification of the cloud, and their corresponding optimized forms of points, curves, surfaces, or masses.

For implementing the general theory we should abstractly describe our mission as:
1. Our work as an inferring machine. We relate, conclude, re-relate, re-conclude and so on
2. Our knowledge as relations. The most important of which is the relation of classification. Classifications are relations of the relations; a relation cannot exist without the classification relation.
3. The world of actions supports or contradicts our concluded relations.

As in Figure 10, the important constituents of the search are Relations, Hierarchy of relations (relations describing relations, like classification or relations meta-data), Actions, our understanding (tested or untested), and samples of inferred relations (zoom-in-zoom-out, pattern of each zone and its neighbors’ arrangement, form, or stresses). These constituents solely or collectively help to build a best guess.

As in Figure 11, a best guess implementation can be found using the zoom-in-zoom-out relation.

The assumptions are:
• The final clusters’ number is less or utmost equal to the optimal centroid clusters.
• the optimal centroid clusters’ forms are defined using Form recognition techniques
• Low-resolution and high-resolution (using the same bell-shaped diagram) will be used to define the form and then the final numbers of the final clusters.
• The process would perform optimally (computationally) using parallel processing threads.
• Other supportive optimal centroids could be considered to support final decisions.

Figure 10: The abstract constituents of any implementer of the general theory. Computationally, these constituents can function in parallel or sequentially. The yellow colored items represent our best guess general theory implementation as in Fig. 11.
3. CONCLUSION:
What is the difference between the general theory and the analogous system? It is hard to prove the advantage of one over the other, as both can be developed and enhanced to perform better. Both of them are operating based on certain methodology. Our approach depends on interpreting and understanding the point cloud. This approach is readily optimized and controlled. If the analogous systems are designed to rely on the cloud, they will perform better. This proves that introduced general theory is the more general and the more comprehensive approach.

The introduced general theory was envisioned based on the success of the special centroid form. The results, computationally achieved so far, in the concentric form are highly promising, but do not provide a full understanding of the cloud. For example, the form of the cloud clusters may be non-concentric forms and representing them by a point is a misinterpretation. Other possible representations of curve, surface, or masses could be considered as different analytical methods of the point cloud. The abstract constituents of any implementer of the general theory were defined. A zoom-in-zoom-out implementation of the general theory was introduced. This implementation can be regarded as a recursive call to the centroid form.

As a brief of the tests conducted computationally, Delaunay triangulation representation performs two to three times better than Voronoi diagram representation; the Voronoi representation performed much better than other representations like shortest walk, and the classification method, using Voronoi, superseded our implemented analogous method five to ten times.

REFERENCES:
Author’s index

Abbas, Günsu Merin .. 185
Balla-S. Béla, Szilvia .. 105
Bertin, Vito .. 79
Botzheim, Bálint ... 213
Bödő, Gábor .. 235
Castellon Gonzalez, Juan José 177
Chang, Tengwen .. 163
Chaszar, Andre ... 227
D’Acunto, Pierluigi .. 177
Datta, Sambit .. 163
De Luca, Francesco .. 195
De Paris, Sabine ... 55
Dino, Ipek Gürsel ... 185
Dumitrescu, Delia ... 203
Elkady, Shawkat L. ... 169
Ezzat, Mohammed .. 111
Fehér, András .. 235
Fricker, Pia ... 119
Füzes, Bálint Péter .. 73
Gidófalvy, Kitti ... 213
Gyulai, Attila .. 67
Hadjizianisz, Konsztantinosz 235
Hegyi, Dezső .. 73
Heinrich, Benjamin .. 243
Iványi, Péter .. 221
Kari, Szabolcs .. 67
Kikunaga, Patricia Emy 213
Koenig, Reinhard ... 15
Kolarevic, Branko ... 27
Kulcke, Matthias .. 61
Lam, Wai Yin ... 79
Lellei, László .. 67
Lorenz, Wolfgang E. 249
Lovas, Réka .. 235
Lucchi, Elena ... 155
Matsubayashi, Michio 87
Nováková, Kateřina ... 133
Nuno Lacerda Lopes, Carlos 55
Pascucci, Michela ... 155
Pletenac, Lidija ... 141
Reffat M., Rabee ... 169
Reith, András .. 213
Riedel, Miklós Márton 67
Rossado Espinoza, Verónica Paola 127
Sajtos, István .. 149
Sárközi, Réka ... 221
Schmitt, Gerhard .. 15
Seddik, Moamen M. .. 169
Selvær, Harald ... 99
Sik, András ... 67
Smolík, Andrei ... 163
Strommer, László ... 49
Sundfør, Ingolf ... 99
Surina, Dóra .. 235
Szabó, Beatrix ... 235
Széll, Attila Béla ... 221
Szilvási-Nagy, Márta 105
Szollár, András ... 213
Ther, Tamás ... 149
Vári, Barnabás ... 235
Watanabe, Shun .. 41, 87
Wurzer, Gabriel .. 243
Xu, Lei .. 93
Yajima, Kazumi ... 33
The aim of these workshops and conference is to help transfer and spread newly appearing design technologies, educational methods and digital modelling supported by information technology in architecture. By organizing a workshop with a conference, we would like to close the distance between practice and theory.

Architects who keep up with the new designs demanded by the building industry will remain at the forefront of the design process in our information-technology based world. Being familiar with the tools available for simulations and early phase models will enable architects to lead the process. We can get “back to command”. The other message of our slogan is <Back to command>. In the expanding world of IT applications there is a need for the ready change of preliminary models by using parameters and scripts. These approaches retrieve the feeling of command-oriented systems, although, with much greater effectiveness.

Why CAADence in architecture?

"The cadence is perhaps one of the most unusual elements of classical music, an indispensable addition to an orchestra-accompanied concerto that, though ubiquitous, can take a wide variety of forms. By definition, a cadence is a solo that precedes a closing formula, in which the soloist plays a series of personally selected or invented musical phrases, interspersed with previously played themes – in short, a free ground for virtuosic improvisation."